用户名: 密码: 验证码:
湿法烟气脱硫喷淋塔气体进口角度对塔内流场的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of Gas Inlet Angle of Wet Flue Gas Desulfurization Spray Tower on Flow Field in the Tower
  • 作者:卜奔 ; 乔昭毓 ; 刘付永 ; 董川
  • 英文作者:BU Ben;QIAO Zhaoyu;LIU Fuyong;DONG Chuan;Institute of Environmental Science,and School of Chemistry and Chemical Engineering,Shanxi University;Shanxi Aluminium Plant Design Institute Limited Company;
  • 关键词:烟气脱硫 ; 喷淋塔 ; 气体进口角度 ; 塔内流场
  • 英文关键词:flue gas desulphurization;;spray tower;;gas inlet angle;;tower flow field
  • 中文刊名:SXDR
  • 英文刊名:Journal of Shanxi University(Natural Science Edition)
  • 机构:山西大学环境科学研究所;山西铝厂设计院有限公司;
  • 出版日期:2018-03-22 17:35
  • 出版单位:山西大学学报(自然科学版)
  • 年:2018
  • 期:v.41;No.162
  • 基金:国家自然基金面上项目(51578557)
  • 语种:中文;
  • 页:SXDR201804022
  • 页数:7
  • CN:04
  • ISSN:14-1105/N
  • 分类号:157-163
摘要
文章通过数值模拟和实验相结合的方法,研究了气体进口角度不同对塔内流场产生的影响。结果表明,由于射流的惯性作用,轴向速度分布发生偏斜,在单侧直流进口和偏斜射流两种情况下,喷淋塔塔内都会形成倾斜不均匀的流场分布,在进口侧形成回流区、死滞区和涡流区。在气体入口偏斜一定角度后,回流区内的气体逆向流速度会减小,同时随着气体流量的减小而减小。在这两种情况下,回流区、死滞区和涡流区会随气流的上升而逐渐减小,最终在塔高300mm处消失。随着塔高进一步升高,塔内流场趋于均匀分布,但高度增加会使投资和运行费用随之提高,因此,在保证脱硫效率的前提下,塔高以400mm左右为宜。
        The influence of the inlet angle of gas on the flow field in the tower was studied by numerical simulation and experimental test.The results show that under the conditions of the direct and oblique jets,the axial velocity distribution is skewed because of the inertia of the jet.The uneven flow field is formed in the spray tower,and the recirculation zone,dead stagnation zone and vortex zone are formed at the inlet side.The gas reverse flow velocity in the recirculation zone decreases with a certain angle and the decrease of the gas flow rate.In the two conditions,the recirculation zone,dead zone,and vortex zone decrease with increasing of the height of the tower.The three zones will disappear at the height of 300 mm.The distribution of flow field will become more uniform at higher section of the tower.However,the higher tower will increase the cost of investment and operation,therefore,the most suitable height of tower is about 400 mm on the premise of the efficiency of desulphurization.
引文
[1]李睿,苏伟,宋存义,等.烟气脱硫卧式喷淋塔的数值研究[J].环境工程学报,2016,10(10):5798.5802.DOI:10.12030/j.cjee.201505044.
    [2]王鹏.浅谈环境保护与锅炉烟气脱硫除尘技术[J].环境与可持续发展,2015,40(6):204-205.DOI:10.3969/j.issn.1673-288X.2015.06.058.
    [3]邵中兴,李建洪.我国燃煤SO2污染现状及控制对策[J].山西化工,2011,31(1):46-48.DOI:10.3969/j.issn.1004-7050.2011.01.015.
    [4]胡华斌.煤炭洗选脱硫技术[J].河南化工,2014,31(11):22-24.DOI:10.3969/j.issn.1003-3467.2014.11.006.
    [5]李荫堂.环境保护与节能[M].西安:西安交通大学出版社,1998.
    [6]钟秦.燃煤烟气脱硫脱硝技术及工程实例[M].北京:化学工业出版社,2002.
    [7] Nygaard H G,Kiil S,Johnsson J E,et al.Full-scale Measurements of SO2 Gas Phase Concentrations and Slurry Composition in a Wet Flue Gas Desulphurization Spray Absorber[J].Fuel,2004,83:1151-1164.DOI:10.1016/j.fuel.2003.12.007.
    [8] Zhu J,Liu Z,Bai J,et al.Modeling and Experimental Studies of Ammonia Absorption in a Spray Tower[J].Korean J Chem Eng,2016,33(1):63-72.DOI:http:∥dx.doi.org/10.1007/s11814-015-0056-4.
    [9] Warych J,Szymanowski M.Optimum Values of Process Parameters of the Wet Limestone Flue Gas Desulfurization System[J].Chem Eng Tech,2002,25:427-432.DOI:10.1002/1521-4125(200204)25:4<427:aid-ceat427>3.0.co;2-x.
    [10]杜云贵,邓佳佳,冯志云,等.湿法烟气脱硫塔的设计与优化[J].环境工程,2010,28(2):69-71.DOI:10.13205/j.cjee.201512065.
    [11]蒋惠梦,余苏玲,肖述明,等.湿法烟气脱硫喷淋塔的持液特性[J].环境工程学报,2017,11(3):1746-1754.DOI:10.12030/j.hjgc.2010.02.020.
    [12] Meikap B C,Kundu G,Biswas M N.Modeling of a Novel Multistage Bubble Column Scrubber for Flue Gas Desulfurization[J].Chem Eng Journal,2002,86:331-342.DOI:10.1016/s1385-8947(01)00226-1.
    [13] Van Der Heyden C,Vanthillo B,Pieters J G,et al.Mechanistic Modeling of Pollutant Removal,Temperature,and Evaporation in Chemical Air Scrubbers[J].Chemical Engineering&Technology,2016,39(10):1785-1796.DOI:10.1002/ceat.201500664.
    [14]赵健值,金保升,仲兆平.烟气脱硫喷淋塔的数值模拟[J].化学工程,2007,35(8):61-64.DOI:10.3969/j.issn.1005-9954.2007.08.016.
    [15]周光垌.流体力学[M].北京:高等教育出版社,2000.
    [16]赵喆,田贺忠,阿庆兴,等.湿式烟气脱硫喷淋塔内部流场数值模拟研究[J].环境污染治理技术与设备,2005,6(5):16-20.DOI:10.3969/j.issn.1673-9108.2005.05.003.
    [17]路明,孙西欢,李彦军,等.湍流数值模拟方法及其特点分析[J].河北建筑科技学院学报,2006,23(2):106-110.DOI:10.3969/j.issn.1673-9469.2006.02.030.
    [18]周力行.湍流两相流与燃烧的数值模拟[M].北京:清华大学出版社,1991.
    [19] David C W.Turbulence Modeling for CFD[M].California:DSW Industries,Inc,1994.
    [20]王福军.计算流体动力学分析[M].北京:清华大学出版社,2004.
    [21]李荫堂,李安平,王双,等.烟气脱硫喷淋塔气体旋流实验研究[J].环境技术,2005,1:25-28.DOI:10.3969/j.issn.1004-7204.2005.01.008.
    [22]徐挺.相似方法及其应用[M].北京:机械工业出版社,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700