用户名: 密码: 验证码:
黄土堆积体变坡长坡面细沟动态发育过程
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Rill Dynamic Development Process of Loess Engineering Accumulation With Variable Slope Length
  • 作者:齐星圆 ; 高照良 ; 张翔 ; 李永红 ; 李玉亭婷
  • 英文作者:QI Xingyuan;GAO Zhaoliang;ZHANG Xiang;LI Yonghong;LI Yutingting;Institute of Soil and Water Conservation, North A&F University;Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources;Pingxiang University;
  • 关键词:工程堆积体 ; 细沟动态发育 ; 放水冲刷 ; 侵蚀产沙
  • 英文关键词:engineering accumulation;;rill dynamic development;;scouring-erosion;;eroding sediment
  • 中文刊名:STBY
  • 英文刊名:Research of Soil and Water Conservation
  • 机构:西北农林科技大学水土保持研究所;中国科学院水利部水土保持研究所;萍乡学院;
  • 出版日期:2019-04-23
  • 出版单位:水土保持研究
  • 年:2019
  • 期:v.26;No.134
  • 基金:国家自然科学基金“工程堆积体陡坡坡面径流侵蚀输沙动力过程试验研究”(41671283);; “十三五”重点研发计划“高塬沟壑区固沟保塬生态防护与苹果产业提质增效技术及示范”(2016YFC0501706-02)
  • 语种:中文;
  • 页:STBY201903009
  • 页数:7
  • CN:03
  • ISSN:61-1272/P
  • 分类号:48-54
摘要
通过开展野外模拟径流冲刷试验,研究变坡长条件下工程堆积体平台汇水对坡面细沟动态发育的影响。以中国科学院水利部水土保持研究所杨凌水土保持野外科学试验站仿真堆积体陡坡为对象,设计3个坡度(24°,28°,32°),4个坡长(8,12,16,20 m)及4个流量(12,18,24,30 L/min),分析变坡长条件下工程堆积体坡面细沟动态发育过程。结果表明:(1)沟宽和沟深均随冲刷历时(30 min)延长呈增大趋势,且呈对数函数关系,其中沟宽在0~9 min发育迅速,占最终沟宽的64%~88%;沟深在0~15 min发育较快,占最终沟深的68%~84%。(2)细沟宽深比呈先增加后减缓趋势,并最终稳定在1.54~2.56,细沟断面呈V形。(3)平台—陡坡过渡区和坡上部位泥沙贡献率高达60.36%,为土壤侵蚀易发区。(4)坡长变化对沟宽和沟深有显著影响且规律明显,对细沟宽深比产生影响但无明显规律,对断面泥沙贡献率影响较小。研究结果可为工程堆积体坡面产沙规律揭示及水土流失防控措施配置提供参考。
        In order to revel the impact of engineering accumulation platform catchment to the dynamic development of rill on variable slope length,scouring-erosion experiments were conducted. These were based on the example of the steep slope of the engineering accumulation at Yangling Soil and Water Conservation Field Science Experiment Station of Institute of Soil and Water Conservation, Chinese Academy of Sciences,and three slopes(24°, 28°, 32°), four slopes length(8 m, 12 m, 16 m and 20 m) and four flow rates(12 L/min, 18 L/min, 24 L/min, 30 L/min) were designed to analyze rill dynamic development process of loess accumulation under variable slope length. The results showed that:(1) the rill width and depth both increased with time of eroding(30 minutes), and showed logarithmic function relationship; the rill width developed rapidly at 0~9 minutes, accounting for 64%~88% of the final rill width; the rill depth developed rapidly at 0~15 minutes, accounting for 68%~84% of the final rill depth;(2) the width-depth ratio of rill showed first increased and then slowed down, finally stabilized at 1.54~2.56, and shape of the rill was V-shape finally;(3) the contribution rate of sediment in the platform-steep slope transition zone and the upper part of the slope were as high as 60.36%, which was an area prone to soil erosion;(4) the change of slope length had a significant effect on the width and depth of the rill, and the regularity was obvious, it had an impact on the width-depth ratio of the rill but had no obvious regularity, and had little effect on the contribution rate of the sediment in the section. The research results can provide references for revealing the regularity of sediment production on the slope of engineering accumulation and the configuration of prevention and control measures for soil erosion.
引文
[1]陈杰,齐实,王奇,等.生产建设项目水土保持监测存在的问题与对策[J].南水北调与水利科技,2012,10(3):118-122,126.
    [2]张乐涛,高照良,李永红,等.模拟径流条件下工程堆积体陡坡土壤侵蚀过程[J].农业工程学报,2013,29(8):145-153.
    [3]张乐涛,高照良,李永红,等.黄土丘陵区堆积体边坡对上方来水的侵蚀响应[J].水科学进展,2015,26(6):811-819.
    [4]张攀,姚文艺,唐洪武,等.黄土坡面细沟形态变化及对侵蚀产沙过程的影响[J].农业工程学报,2018,34(5):114-119.
    [5]Vinci A,Brigante R,Todisco F,et al.Measuring rill erosion by laser scanning[J].Catena,2015,124(1):97-108.
    [6]Abrahams A D,Li G,Parsons A J.Rill hydraulics on a semiarid hillslope,southern Arizona[J].Earth Surface Processes and Landforms,1996,21(1):35-47.
    [7]郑子成,秦凤,李廷轩.不同坡度下紫色土地表微地形变化及其对土壤侵蚀的影响[J].农业工程学报,2015,31(8):168-175.
    [8]蔡强国,朱远达,王石英.几种土壤的细沟侵蚀过程及其影响因素[J].水科学进展,2004,15(1):12-18.
    [9]Bochet E,Poesen J,Rubio J L.Mound development as an interaction of individual plantswith soil,water erosion and sedimentation processes on slopes[J].Earth Surface Processes and Landforms,2000,25(8):847-867.
    [10]张思毅,梁志权,谢真越,等.植被调控红壤坡面土壤侵蚀机理[J].水土保持学报,2016,30(3):1-5.
    [11]赵文武,傅伯杰,陈利顶.陕北黄土丘陵沟壑区地形因子与水土流失的相关性分析[J].水土保持学报,2003,17(3):66-69.
    [12]Rejman J,Brodowski R.Rill characteristics and sediment transport as a function of slope length during a storm event on loess soil[J].Earth Surface Processes and Landforms,2005,30(2):231-239.
    [13]牛耀彬,高照良,李永红,等.工程堆积体坡面细沟形态发育及其与产流产沙量的关系[J].农业工程学报,2016,32(19):154-161.
    [14]张攀,姚文艺,唐洪武,等.黄土坡面细沟形态变化及对侵蚀产沙过程的影响[J].农业工程学报,2018,34(5):114-119.
    [15]Stefano C D,Ferro V,Pampalone V,et al.Field investigation of rill and ephemeral gully erosion in the Sparacia experimental area,South Italy[J].Catena,2013,101(2):226-234.
    [16]裴冠博,龚冬琴,付兴涛.晋西黄绵土坡面细沟形态及其对产流产沙的影响[J].水土保持学报,2017,31(6):79-84.
    [17]沈海鸥,郑粉莉,温磊磊,等.降雨强度和坡度对细沟形态特征的综合影响[J].农业机械学报,2015,46(7):162-170.
    [18]和继军,吕烨,宫辉力,等.细沟侵蚀特征及其产流产沙过程试验研究[J].水利学报,2013,44(4):398-405.
    [19]张攀,唐洪武,姚文艺,等.细沟形态演变对坡面水沙过程的影响[J].水科学进展,2016,27(4):535-541.
    [20]Shen H O,Zheng F L,Wen L L,et al.An experimental study of rill erosion and morphology[J].Geomorphology,2015,231(15):193-201.
    [21]马小玲,张宽地,杨帆,等.坡面细沟侵蚀断面形态发育影响因素分析及动力特性试验[J].农业工程学报,2017,33(4):209-216.
    [22]Dong Y Q,Zhuang X H,Lei T W.A method for measuring erosive flow velocity with simulated rill[J].Geoderma,2014,232(11):556-562.
    [23]刘俊体,孙莉英,张学培,等.黄土坡面细沟侵蚀发育阶段的影响因素及其效应分析[J].水土保持学报,2013,27(4):53-57.
    [24]霍云梅,毕华兴,朱永杰,等.模拟降雨条件下南方典型黏土坡面土壤侵蚀过程及其影响因素[J].水土保持学报,2015,29(4):23-26,84.
    [25]王光谦,薛海,刘家宏.坡面产沙理论模型[J].应用基础与工程科学学报,2005,13(S1):1-7.
    [26]吴淑芳,刘政鸿,霍云云,等.黄土坡面细沟侵蚀发育过程与模拟[J].土壤学报,2015,52(1):48-56.
    [27]刘秉正,吴发启.土壤侵蚀[M].西安:陕西人民出版社,1996:59.
    [28]贾红杰,傅瓦利,张治伟,等.中梁山岩溶区坡耕地土壤侵蚀137 Cs法研究[J].西南大学学报:自然科学版,2008,30(8):57-61.
    [29]杨明义,田均良.137Cs测定法研究不同坡面土壤侵蚀空间的分布特征[J].核农学报,1999,13(6):368-372.
    [30]邱扬,傅伯杰,王勇.土壤侵蚀时空变异及其与环境因子的时空关系[J].水土保持学报,2002,16(1):108-111.
    [31]郑粉莉,徐锡蒙,覃超.沟蚀过程研究进展[J].农业机械学报,2016,47(8):48-59.
    [32]李勉,李占斌,丁文峰,等.黄土坡面细沟侵蚀过程的REE示踪[J].地理学报,2002,57(2):218-223.
    [33]吴永红,王愿昌,刘斌,等.黄土坡面的土壤侵蚀波动性[J].中国水土保持科学,2005,3(2):28-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700