用户名: 密码: 验证码:
河道糙率和桥墩壅水对宽浅河道行洪能力影响的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of roughness and backwater of bridge piers on flood carrying capacity in a wide-shallow river
  • 作者:王涛 ; 郭新蕾 ; 李甲振 ; 郭永鑫 ; 周志刚 ; 郭晓明
  • 英文作者:WANG Tao;GUO Xinlei;LI Jiazhen;GUO Yongxin;ZHOU Zhigang;GUO Xiaoming;State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin,China Institute of Water Resources and Hydropower Research;Hunchun Water Conservancy Bureau;Yellow River Institute of Hydraulic Research;
  • 关键词:宽浅河道 ; 糙率 ; 桥墩 ; 壅水 ; 物理模型 ; 数值模拟
  • 英文关键词:wide-shallow river;;roughness;;backwater;;bridge pier;;physical model;;numerical simulation
  • 中文刊名:SLXB
  • 英文刊名:Journal of Hydraulic Engineering
  • 机构:中国水利水电科学研究院流域水循环与调控国家重点实验室;珲春市水务局;黄河水利科学研究院;
  • 出版日期:2019-01-24 17:20
  • 出版单位:水利学报
  • 年:2019
  • 期:v.50;No.509
  • 基金:国家重点研发计划项目(2017YFC0405103);; 国家自然科学基金项目(51679262,51509099);; 中国水科院基本科研业务费项目(HY0145C222018,HY0145B642017)
  • 语种:中文;
  • 页:SLXB201902003
  • 页数:9
  • CN:02
  • ISSN:11-1882/TV
  • 分类号:23-31
摘要
为研究宽浅型河道糙率和桥墩壅水对行洪能力的影响,本研究采用了物理模型试验、数值模拟和经验公式方法分别模拟其水力特性并进行比较分析。通过物理模型试验给出了河道糙率的模拟方法,分别采用4种材料模拟河道护坡:无植被、稀疏植被、稀疏植被中间种植灌木和密集植被。其中,糙率最大的密集植被和糙率最小的无植被护坡条件下各断面水位差均值为0.03 m。结果表明:对于宽浅河道,护坡糙率较大范围的变化对河道行洪能力影响不显著。复杂边界条件和水力条件下桥墩壅水模拟结果表明:二维数学模型比经验公式和一维数学模型能较真实地反映河道边界条件、桥梁长度、桥墩形状对桥墩壅水高度的影响,模拟结果同物理模型试验值较为接近。本研究为宽浅河道安全行洪中糙率评估和桥墩壅水计算提供可靠的参数和依据。
        The roughness and backwater of bridge piers are the key parameters,which effect on the flood carrying capacity in a wide-shallow river. In this study,these two parameters are analyzed by physical model test,numerical simulation and empirical formula. The slope protection is simulated by four kinds of materials,namely,no vegetation,sparse vegetation,sparse vegetation and shrub,and dense vegetation. The average water level difference is 0.03 m under the condition of no vegetation and dense vegetation. The results show that the impact on the flood carrying capacity is not significant with the obvious roughness changes in the wide-shallow river. The simulation on the backwater of bridge piers shows the results of the two-dimensional mathematical models, which can reflect the boundary conditions of the river and characteristics of the bridge more really than the empirical formula and one-dimensional mathematical model, are close to the physical model experiments. This study provides a reliable basis for the evaluation of the roughness and the calculation of the pier backwater in the wide-shallow river.
引文
[1]王虹,李昌志,程晓陶.流域城市进化中雨虹综合管理量化关系分析[J].水利学报,2015,46(3):271-279.
    [2]许唯临.复式河道漫滩水流计算方法研究[J].水利学报,2002(6):21-26,31.
    [3] WARDHANA K,HADIPRIONO F C. Analysis of Recent Bridge failures in the United States[J]. Journal of Per?formance of Constructed Facilities,2003,17(3):144-150.
    [4] SECKIN G,YURTAL R,HAKTANIR T. Contraction and expansion 1osses through bridge constrictions[J].Journal of Hydraulic Engineering,1998,124(5):546-549.
    [5]刘沛清,冬俊瑞.复式断面渠道中均匀流的水力计算[J].长江科学研究院院报,1995(3):61-66.
    [6] KOUWEN N,UNNY T E. Flexible roughness in open channel[J]. Journal of the Hydraulics Division,1973,99(5):713-728.
    [7] ALFRED J,KALYANAPU1,STEVEN J B,et al. Effect of land use-based surface roughness on hydrologic mod?el output[J]. Journal of Spatial Hydrology,2009,9(2):51-71.
    [8] NEPF H M. Hydrodynamics of vegetated channels[J]. Journal of Hydraulic Research,2012,50(3):262-279.
    [9] CURRAN J C,HESSION W C. Vegetative impacts on hydraulics and sediment processes across the fluvial sys?tem[J]. Journal of Hydrology,2013,505(8):364-376.
    [10] WANG T,YANG K L,GUO X L,et al. Experiment study hydraulic roughness for Kan Tin main drainage chan?nel in Hong Kong[J]. Journal of Hydrodynamics,2012,24(5):776-784.
    [11] HUI E Q,HU X. A study of drag coefficient related with vegetation based on the flume experiment[J]. Journal of Hydrodynamics,2010,22(3),329-337.
    [12]唐洪武,闫静,肖洋,等.含植物河道曼宁阻力系数的研究[J].水利学报,2007,38(11):1347-1353.
    [13]曾玉红,槐文信,张健,等.非淹没刚性植被流动阻力研究[J].水利学报,2011,42(7):834-838.
    [14]杨开林,汪易森.渠道糙率率定误差分析[J].水利学报,2012,43(6):639-644.
    [15]王光谦,黄跃飞,魏加华,等.南水北调中线工程总干渠糙率综合论证[J].南水北调与水利科技,2006,4(1):8-14.
    [16]郑爽,吴一红,白音包力皋,等.含水生植物河道曼宁糙率系数的试验研究[J].水利学报,2017,48(7):874-881.
    [17]杨克君,曹叔尤,刘兴年.复式河槽综合糙率计算方法比较与分析[J].水利学报,2005,36(7):1-9.
    [18] ABERLE J,JARNELA J. Flow resistance of emergent rigid and flexible vegetation[J]. Journal of Hydraulic Re?search,2013,51(1):33-45.
    [19] HUNT J,BRUNNER G W,LAROCK B E. Flow transitions in bridge backwater analysis[J]. Journal of Hydrau?lic Engineering,1999,125(9):98l-983.
    [20]郭晓晨,陈文学,穆祥鹏,等.南水北调中线干渠桥墩壅水计算公式的选择[J].南水北调与水利科技,2009,7(6):108-112.
    [21]王开,傅旭东,王光谦.桥墩壅水的计算方法比较[J].南水北调与水利科技,2006,4(6):53-55.
    [22]陈绪坚,胡春宏.桥渡壅水平面二维数学模型模拟研究[J].中国水利水电科学研究院学报,2003,1(3):194-199.
    [23] SHARP J J. Hydraulic Modeling[M]. Boston:Buterworth(Publisher)Inc,1981.
    [24]马健,孙东坡,张土乔,等.潮汐弯道段取排水口温度场研究[J].水力发电学报,2006(6):119-124.
    [25]李甲振,郭永鑫,甘明生,等.河工模型试验加糙方法综述[J].南水北调与水利科技,2017,15(4):129-135.
    [26]南京水利水电科学研究院,水利水电科学研究院.水工模型试验[M]. 2版.北京:水利水电出版社,1985.
    [27]赵海镜,田世民,王鹏涛,等.水工模型试验中的草垫加糙方法研究[J].工版.水力发电学报,2015(4):77-82.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700