用户名: 密码: 验证码:
基于光学Tamm态的石墨烯光调制器
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Graphene Optical Modulator Based on Optical Tamm States
  • 作者:王磊 ; 栾开智 ; 左依凡 ; 李培丽
  • 英文作者:Wang Lei;Luan Kaizhi;Zuo Yifan;Li Peili;College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications;
  • 关键词:光通信 ; 石墨烯 ; 光学Tamm态 ; 光调制器
  • 英文关键词:optical communications;;graphene;;optical Tamm states;;optical modulator
  • 中文刊名:JJZZ
  • 英文刊名:Chinese Journal of Lasers
  • 机构:南京邮电大学电子与光学工程学院;
  • 出版日期:2018-06-27 17:08
  • 出版单位:中国激光
  • 年:2018
  • 期:v.45;No.503
  • 基金:国家自然科学基金(61275067)
  • 语种:中文;
  • 页:JJZZ201811026
  • 页数:6
  • CN:11
  • ISSN:31-1339/TN
  • 分类号:195-200
摘要
利用光学Tamm态(OTS)在金属-分布式布拉格反射镜(DBR)界面处的局域场增强和石墨烯的电控特性,提出一种基于OTS的石墨烯光调制器。利用有限元法和时域有限差分法对提出的调制器进行仿真研究。研究结果表明:当入射波长为850.7 nm时,在金属-DBR界面处会产生OTS,入射光的反射率比较低;当外加驱动电压大于7.5 V时,OTS的本征波长会发生漂移,入射光的反射率增大,可以实现强度调制。调制器的最大调制深度可达0.96,消光比为14.45 dB,在不考虑电路RC时间常数影响的情况下,调制速率超过600 GHz。该结构石墨烯光调制器在一定波长范围内,可以实现调制深度不同的光调制,在未来的光通信系统和光信息处理系统中具有很好的应用前景。
        By using the local field enhancement of the optical Tamm state(OTS) at the interface of metal-distributed Bragg reflector(DBR) and the electronic control characteristics of graphene, we propose a graphene based light modulator based on OTS. The proposed optical modulator is simulated by finite element method and finite difference time domain method. The results show that when the incident wavelength is 850.7 nm, OTS can be engendered at the metal-DBR interface and the reflectivity of incident light is relatively low. When the driving voltage is greater than 7.5 V, the intrinsic wavelength of OTS drifts and the reflectivity of incident light increases, so that intensity modulation can be achieved. The maximum modulation depth of the optical modulator can be up to 0.96 and the extinction ratio is 14.45 dB. Without considering the effect of RC time constant on the modulation rate, the modulation rate is above 600 GHz. The proposed graphene modulator can be modulated with different modulation depths in a certain wavelength range. It has a good application prospect in the optical communication system and the optical information processing system in the future.
引文
[1] Yu K X , Pang Z G, Jiang A E. Lithium niobate fiber acousto-electro-optic modulator[J]. Journal of Beijing University of Technology, 2004, 30(2): 256-259. 俞宽新, 庞兆广, 蒋安恩. 铌酸锂光纤声电光调制器[J]. 北京工业大学学报, 2004, 30(2): 256-259.
    [2] Chen H B, Chen F, She W L. The design of acousto-optic modulator for both phase modulation and amplitude modulation[J]. Acta Photonica Sinica, 2003, 32(2): 166-169. 陈海波, 陈芳, 佘卫龙. 相位、振幅调制两用声光调制器设计[J]. 光子学报, 2003, 32(2): 166-169.
    [3] Guo J H, Zhu Z M, Deng W M. A novel magneto-optical modulator[J]. Acta Optica Sinica, 2000, 20(1): 110-113. 郭继华, 朱兆明, 邓为民. 新型磁光调制器[J]. 光学学报, 2000, 20(1): 110-113.
    [4] Liu M, Yin X B, Ulin-Avila E, et al. A graphene-based broadband optical modulator[J]. Nature, 2011, 474: 64-67.
    [5] Liu M, Yin X B, Zhang X. Double-layer graphene optical modulator[J]. Nano Letters, 2012, 12(3): 1482-1485.
    [6] Li H, Anugrah Y, Koester S J, et al. Optical absorption in graphene integrated on silicon waveguides[J]. Applied Physics Letters, 2012, 101(11): 111110.
    [7] Gosciniak J, Tan D T. Theoretical investigation of graphene-based photonic modulators[J]. Scientific Reports, 2013, 3: 1897.
    [8] Du W, Li E P, Hao R. Tunability analysis of a graphene-embedded ring modulator[J]. IEEE Photonics Technology Letters, 2014, 26(20): 2008-2011.
    [9] Mohsin M, Schall D, Otto M, et al. Graphene based low insertion loss electro-absorption modulator on SOI waveguide[J]. Optics Express, 2014, 22(12): 15292-15297.
    [10] Zhou H C. The properties and applications of optical Tamm states in metal-distributed Bragg reflector[D]. Wuhan: Huazhong University of Science and Technology, 2012: 2-3. 周海春. 金属-分布式布拉格反射镜结构中的光学Tamm态[D]. 武汉: 华中科技大学, 2012: 2-3.
    [11] Wang J M. Structure design of graphene-based modulator and study of its characteristics[D]. Chengdu: University of Electronic Science and Technology of China, 2014: 25-26. 王建敏. 基于石墨烯的电光调制器的结构设计及其特性研究[D]. 成都: 电子科技大学, 2014: 25-26.
    [12] Chen X F, Li S J, Zhang Y, et al. The wide-angle perfect absorption based on the optical Tamm states[J]. Optoelectronics Letters, 2014, 10(4): 317-320.
    [13] Jiang Y. Study of optical Tamm state photonic devices in metal-periodical structure[D]. Chengdu: University of Electronic Science and Technology of China, 2014: 22-26. 蒋瑶. 金属-周期性介质光学Tamm态光子器件研究[D]. 成都: 电子科技大学, 2014: 22-26.
    [14] Miloua R, Kebbab Z, Chiker F, et al. Peak, multi-peak and broadband absorption in graphene-based one-dimensional photonic crystal[J]. Optics Communications, 2014, 330: 135-139.
    [15] Li T T. The research of graphene-based electro-absorption modulator[D]. Chengdu: University of Electronic Science and Technology of China, 2015: 46-48. 李婷婷. 石墨烯电吸收调制器的基础研究[D]. 成都: 电子科技大学, 2015: 46-48.
    [16] Chen H M, Wei X Y. The design of high-speed photonic crystal optical switch[J]. Opto-Electronic Engineering, 2013, 40(11): 34-39. 陈鹤鸣, 卫晓颖. 高速光子晶体光开关的设计[J]. 光电工程, 2013, 40(11): 34-39.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700