用户名: 密码: 验证码:
以生物质为原料合成丙烯腈的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress of acrylonitrile production from renewable biomass
  • 作者:周晓峰 ; 吴粮华 ; 姜家乐
  • 英文作者:ZHOU Xiaofeng;WU Lianghua;JIANG Jiale;SINOPEC Shanghai Research Institute of Petrochemical Technology;
  • 关键词:丙烯腈 ; 生物质 ; 甘油 ; 谷氨酸 ; 3-羟基丙酸 ; 催化剂
  • 英文关键词:acrylonitrile;;biomass;;glycerol;;glutamic acid;;3-hydroxypropionic acid;;catalyst
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:中国石化上海石油化工研究院;
  • 出版日期:2019-04-05
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.331
  • 语种:中文;
  • 页:HGJZ201904025
  • 页数:8
  • CN:04
  • ISSN:11-1954/TQ
  • 分类号:226-233
摘要
生物质原料由于具有来源广泛、绿色环保和可再生循环利用等特点,近年来逐渐应用于丙烯腈的合成研究。本文简述了以生物质(甘油、谷氨酸和3-羟基丙酸)为原料合成丙烯腈3种新工艺的研究进展,主要介绍和讨论了甘油两段法、谷氨酸脱羧基法和3-羟基丙酸腈化法的合成工艺及其催化剂的性能。目前甘油两段法丙烯腈总收率在60%左右,远低于丙烯法工业装置高于80%的水平,并且催化剂较易积炭而失活,今后仍需努力提高丙烯腈收率和催化剂的稳定性;谷氨酸脱羧基法的优点是反应过程中不需要引入氨,但是工艺复杂且对环境影响较大,丙烯腈单收只有20%左右,合成工艺仍待进一步优化;而3-羟基丙酸腈化法不需要氧气参与反应,副产物较少,碳氧化物的排放显著降低且不产生氢氰酸,丙烯腈单收大于90%远高于丙烯法,通过该工艺生产的丙烯腈具有一定的成本优势,比较适合应用于国内低成本聚丙烯腈基碳纤维的生产。
        Biomass has been widely applied to the research on synthesizing acrylonitrile due to its characteristics such as abundance in nature, environmentally friendliness and recyclability. In this article,the ongoing research in the process of acrylonitrile synthesis was reviewed, focusing on renewable biomass resource including glycerol, glutamic acid and 3-hydroxypropionic acid. Three processes using different catalysts were introduced and discussed, including two steps(dehydration and ammoxidation) of glycerol,decarboxylation from glutamic acid and nitrilation of 3-hydroxypropionic acid. The yield of acrylonitrile using the first process was around 60%, which was much less than 80%+ of propene ammoxidation process. Besides, catalyst used in the process has a poor stability because of carbonaceous deposits.Therefore, increasing acrylonitrile yield and catalyst stability would be the primary goals in the future research. The advantage of the second process is significant without ammonia feedstock, while the process is more complex and less environmentally friendly. The yield of acrylonitrile was no more than 20%, so further exploration of the optimal process and catalytic performance should be included in future research.As for the third process, the absence of oxygen feedstock from the reaction sharply reduced the production of carbon oxides and side products, especially hydrogen cyanide. The acrylonitrile yield of this process exceeded over 90%, which is far beyond than that of propene ammoxidation process. Thus, nitrilation process of 3-hydroxypropionic acid provides a cost-comparable, sustainable route to acrylonitrile, which makes it possible to produce low-cost PAN carbon fibers in domestic market.
引文
[1]姜其舟.丙烯腈行业生产现状分析[J].山东化工, 2018, 47(7):56-57, 59.JIANG Q Z. An overview of the production capacity of acrylonitrile industry[J]. Shandong Chemical Industry, 2018, 47(7):56-57, 59.
    [2] GRASSELLI R K, LUGMAIR C G, VOLPE J A F. Towards an understanding of the reaction pathways in propane ammoxidation based on the distribution of elements at the active centers of the M1phase of the MoV(Nb,Ta)TeO system[J]. Topics in Catalysis, 2011, 54(10):595-604.
    [3]钱伯章.旭化成在泰国的丙烯腈、甲基丙烯酸甲酯和纺黏设施投产[J].合成纤维, 2013, 42(4):15.QIAN B Z. The PTT Asahi new acrylonitrile and methyl methacrylate plants in Thailand were commissioned[J]. Synthetic Fiber in China,2013, 42(4):15.
    [4] Gardner Business Media, Inc. Southern Research Inst. receives DOE award to advance low cost carbon fiber from biomass[EB/OL].[2014-09-01].https://www.compositesworld.com/news/southern-researchinst-receives-doe-award-to-advance-low-cost-carbon-fiber-frombiomass.
    [5]孙启梅,王崇辉,王领民,等.生物柴油副产物粗甘油的综合利用[J].化工进展, 2017, 36(s1):161-166.SUN Q M, WANG C H, WANG L M, et al. Integrated utilization of crude glycerol as a by-product of biodiesel production[J]. Chemical Industry and Engineering Progress, 2017, 36(s1):161-166.
    [6]李春义.甘油催化脱水制备丙烯醛的研究[D].青岛:中国石油大学(华东), 2013.LI C Y. Study on the catalytic dehydration of glycerol to acrolein[D].Qingdao:China University of Petroleum(East China), 2013.
    [7] GUERRERO-PéREZ M O, BA?ARES M A. New reaction:conversion of glycerol into acrylonitrile[J]. ChemSusChem, 2008, 1:511-513.
    [8] CARSTEN L, SéBASTIEN P, BENJAMIN K, et al. Glycerol conversion to acrylonitrile by consecutive dehydration over WO3/TiO2and ammoxidation over Sb-(Fe, V)-O[J]. Applied Catalysis B:Environmental, 2013, 132/133:170-182.
    [9] CARSTEN L, SéBASTIEN P, BENJAMIN K, et al. Reply to the letter to the editor concerning the comments of M.A. Banares and M.O.Guerrero-Pérez to the article“Glycerol conversion to acrylonitrile by consecutive dehydration over WO3/TiO2and ammoxidation over Sb-(Fe,V)-O”[J].Applied Catalysis B:Environmental, 2014, 148/149:604-605.
    [10] BA?ARES M A, GUERRERO-PéREZ M O. Comments on“Glycerol conversion to acrylonitrile by consecutive dehydration over WO3/TiO2and ammoxidation over Sb-(Fe, V)-O”[J]. Applied Catalysis B:Environmental, 2014, 148/149:601-603.
    [11] CALVINO-CASILDA V, GUERRERO-PéREZ M O, BA?ARES M A.Microwave-activated direct synthesis of acrylonitrile from glycerol under mild conditions:effect of niobium as dopant of the V-Sb oxide catalytic system[J]. Applied Catalysis B:Environmental, 2010, 95:192-196.
    [12] Arkema France. Method for the synthesis of acrylonitrile from glycerol:US 8829223[P].2014-09-09.
    [13] GRASSELLI R K, TRIFIRO F. Acrylonitrile from biomass:still far from being a sustainable process[J]. Topics in Catalysis, 2016, 59:1651-1658.
    [14]阿肯马法国公司.从甘油合成丙烯醛的方法:CN101896451[P].2010-11-24.Arkema France. Method for the synthesis of acrolein from glycerol:CN101896451[P]. 2010-11-24.
    [15]阿肯马法国公司.丙烯醛的制备方法:CN101379017[P]. 2013-01-02.Arkema France. Acrolein preparation method:CN101379017[P].2013-01-02.
    [16]阿肯马法国公司.由甘油制造丙烯醛和/或丙烯酸的方法:CN104220409[P]. 2017-02-8.Arkema France. Method for producing acrolein and/or acrylic acid from glycerol:CN104220409[P]. 2017-02-08.
    [17]阿肯马法国公司.使甘油脱水为丙烯醛的方法:CN101119955[P].2011-06-22.Arkema France. Process for dehydrating glycerol to acrolein:CN101119955[P]. 2011-06-22.
    [18]阿肯马法国公司.由甘油制造丙烯醛的方法:CN105348054[P].2016-02-24.Arkema France. Process for manufacturing acrolein from glycerol:CN105348054[P]. 2016-02-24.
    [19]阿肯马法国公司.由甘油制造丙烯醛的方法:CN101801902[P].2015-01-28.Arkema France. Process for manufacturing acrolein from glycerol:CN101801902[P]. 2015-01-28.
    [20]阿肯马法国公司.由甘油制造丙烯醛的方法:CN102197015[P].2011-09-21.Arkema France. Process for manufacturing acrolein from glycerol:CN102197015[P]. 2011-09-21.
    [21]阿肯马法国公司.制备丙烯醛/丙烯酸的改进方法:CN103328428[P]. 2015-12-23.Arkema France. Improved process for manufacturing acrolein/acrylic acid:CN 103328428[P]. 2015-12-23.
    [22]阿肯马法国公司.由甘油制备丙烯醛或丙烯酸的方法:CN102066301[P]. 2011-05-18.Arkema France. Process for manufacturing acrolein or acrylic acid from glycerin:CN102066301[P]. 2011-05-18.
    [23]阿肯马法国公司.使甘油脱水为丙烯醛的方法:CN101119956[P].2012-02-15.Arkema France. Process for dehydrating glycerol to acrolein:CN101119956[P]. 2012-02-15.
    [24]阿肯马法国公司.通过丙三醇脱水制造丙烯醛的方法:CN102046574[P]. 2011-05-04.Arkema France. Method for producing acrolein by means of dehydration of glycerol:CN102046574[P]. 2011-05-04.
    [25] Arkema Group. Successful Arkema&hte research project in glycerol to acrolein and acrylic acid conversion[EB/OL].[2019-03-12].https://www.arkema.com/en/media/news/news-details/SuccessfulArkema-hte-research-project-in-glycerol-to-acrolein-and-acrylicacid-conversion.
    [26] HIROKAZU K, SHOGO I, KENJI H, et al. Conversion of glycerol to acrolein by mesoporous sulfated zirconia-silica catalyst[J]. Chinese Journal of Catalysis, 2017, 38:420-425.
    [27] RODRIGUES M V, VIGNATTI C, GARETTO T, et al. Glycerol dehydration catalyzed by MWW zeolites and the changes in the catalyst deactivation caused by porosity modification[J]. Applied Catalysis A:General, 2015, 495:84-91.
    [28] CHRISTIAN H, ANDREAS L, JAN G M B. Pore condensation in glycerol dehydration:modification of a mixed oxide catalyst[J]. Topics in Catalysis, 2017, 60:1462-1472.
    [29]清华大学.丙烯醛制备方法:CN104387249[P]. 2017-03-01.Tsinghua University. Preparation method of acraldehyde:CN104387249[P]. 2017-03-01.
    [30]复旦大学.甘油脱水制备丙烯醛用的多级孔ZSM-5催化剂及其制备方法:CN105621452[P]. 2016-06-01.Fudan University. Multistage pore ZSM-5 catalyst for preparing acrolein by glycerol dehydration and preparation method of catalyst:CN105621452[P]. 2016-06-01.
    [31]复旦大学.用于甘油脱水制丙烯醛的多级孔ZSM-5沸石催化剂及其制备方法和应用:CN103638965[P]. 2015-12-30.Fudan University. Hierarchical porous ZSM-5 zeolite catalyst for preparing acrolein through glycerin dehydration as well as preparation method and application of hierarchical porous ZSM-5 zeolite catalyst:CN103638965[P]. 2015-12-30.
    [32]复旦大学.一种用于甘油脱水制丙烯醛的纳米ZSM-5/γ-Al2O3复合催化剂及其制备方法和应用:CN104475147[P]. 2017-01-25.Fudan University. Nano ZSM-5/gamma-Al2O3composite catalyst for preparing acraldehyde by glycerol dehydration, and preparation method and application thereof:CN104475147[P]. 2017-01-25.
    [33]阿肯马法国公司.从甘油合成丙烯腈的方法:CN101636381[P].2014-10-15.Arkema France. Method for the synthesis of acrylonitrile from glycerol:CN101636381[P]. 2014-10-15.
    [34] KOLTUNOV K Y, SOBOLEY V I, BONDAREVA V M. Oxidation,oxidative esterification and ammoxidation of acrolein overmetal oxides:do these reactions include nucleophilic acylsubstitution?[J]. Catalysis Today, 2017, 279:90-94.
    [35] THANH-BINH N, DUBOIS J, KALIAGUINEA S. Ammoxidation of acrolein to acrylonitrile over bismuth molybdatecatalysts[J]. Applied Catalysis A:General, 2016, 520:7-12.
    [36]肖雁秋.玉米秸秆原料生物炼制生产谷氨酸的研究[D].上海:华东理工大学, 2014.XIAO Y Q. Study on glutamic acid fermentation using corn stover as raw material through biorefinery technology[D]. Shanghai:East University of Science and Technology, 2014.
    [37] JéR?ME L N, ELINOR L S, MAURICE C R, et al. Biobased synthesis of acrylonitrile from glutamic acid[J]. Green Chemistry, 2011, 13:807-809.
    [38] ANDRADA B, JéR?ME L N, ELINOR L S, et al. Selective oxidative decarboxylation of amino acids to produce industrially relevant nitriles by vanadium chloroperoxidase[J]. ChemSusChem, 2012, 5:1199-1202.
    [39] MIRANDA M O, PIETRANGELO A, HILLMYER M A, et al. Catalytic decarbonylation of biomass-derived carboxylic acids as efficient route to commodity monomers[J]. Green Chemistry, 2012, 14:490-494.
    [40] LAMMENS T M, POTTING J, SANDERS J P M, et al. Environmental comparison of bio-based chemicals from glutamic acid with their petrochemical equivalents[J]. Environmental Science&Technology,2011, 45:8521-8528.
    [41] LAMMENS T M, GANGARAPU S, FRANSSEN M C R, et al. Technoeconomic assessment of the production of bio-based chemicals from glutamic acid[J]. Biofuels Bioproducts Biorefining, 2012, 6(2):177-187.
    [42] ISIKGORA F H, BECER C R. Lignocellulosic biomass:a sustainable platform for the production of bio-based chemicals and polymers[J].Polymer Chemistry, 2015, 6:4497-4559.
    [43] KARP E M, EATON T R, NOGUéV S, et al. Renewable acrylonitrile production[J]. Science, 2017, 358:1307-1310.
    [44] GUERRERO-PéREZ M O, BA?ARES M A. Metrics of acrylonitrile:from biomass vs. petrochemical route[J]. Catalysis Today, 2015, 239:25-30.
    [45] ROMAND S, GOH J. Acrylonitrile process evaluation/research planing[R]. San Francisco:Nexant,Inc, 2015:8.
    [46]芦长椿.碳纤维供求状况与生产成本[J].合成纤维, 2013, 42(2):1-5.LU C C. The demand and supply status of carbon fibers and its production cost[J]. Synthetic Fiber in China, 2013, 42(2):1-5.
    [47]赵稼祥.碳纤维低成本制备技术[J].高科技纤维与应用, 2003, 28(6):12-14.ZHAO J X. Low cost manufacturing technology for carbon fibers[J]. HiTech Fiber&Application, 2003, 28(6):12-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700