用户名: 密码: 验证码:
白马600MW超临界CFB锅炉二次风系统均匀性试验与数值模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental and Numerical Simulation on the Uniformity of Secondary Air System of Baima 600MW Supercritical CFB Boiler
  • 作者:周金良 ; 王泉海 ; 严谨 ; 郭强 ; 吕卓 ; 张弋 ; 卢啸风
  • 英文作者:ZHOU Jinliang;WANG Quanhai;YAN Jin;GUO Qiang;Lü Zhuo;ZHANG Yi;LU Xiaofeng;Key Laboratory of Low Grade Energy Utilization Technology and System, Ministry of Education (Chongqing University);
  • 关键词:超临界循坏流化床(CFB)锅炉 ; 二次风系统 ; 均匀性 ; 偏差 ; 优化设计 ; 流动阻力
  • 英文关键词:supercritical circulating fluidized bed(CFB) boiler;;secondary air system;;uniformity;;deviation;;optimization;;flow resistance
  • 中文刊名:ZGDC
  • 英文刊名:Proceedings of the CSEE
  • 机构:低品位能源利用技术及系统教育部重点实验室(重庆大学);
  • 出版日期:2017-09-26 21:11
  • 出版单位:中国电机工程学报
  • 年:2018
  • 期:v.38;No.589
  • 基金:国家重大研发计划项目(2016YFB0600201)~~
  • 语种:中文;
  • 页:ZGDC201802010
  • 页数:8
  • CN:02
  • ISSN:11-2107/TM
  • 分类号:73-79+338
摘要
循环流化床作为一种新型洁净燃烧技术,具有燃烧效率高、燃料适应性广和污染物排放低等特点。循环流化床在大型化的过程中面临着燃烧均匀性问题,而这与二次风的均匀性密切相关。文中以白马600 MW超临界CFB锅炉二次风系统为研究对象,通过实炉试验测量与数值模拟方法,发现现有二次风系统存在二次风分布不均的现象。实炉冷态测量显示采用支管风门挡板调节可以提高二次风均匀性,且在现有机组上易实施,但会增加支管流动阻力。通过数值模拟方法对二次风系统进行研究,结果表明通过调整部分支管阻力,可使优化后的二次风系统出口速度偏差率均小于5%,其适用于新机组设计。
        As a new type of clean combustion technology, circulating fluidized bed is characterized by high combustion efficiency, wide burnable suitability and low pollutant emission. The circulating fluidized bed development is in the direction of boilers with large-scale parameters and capacity. At the same time, circulating fluidized bed is confronted with the uneven combustion problem, which have close correlation with the uniformity of secondary air system. The research object of this paper is the secondary air system of Baima 600 MW supercritical CFB boiler. Through experimental measurement and numerical simulation method, it is found that secondary air distribution of the existing system is uneven. The measurement results of cold-state furnace show that the air damper adjustment could improve the uniformity of the secondary air and it is easy to implement on the existing unit. However, it would also increase flow resistance of the branch pipe. By numerical simulation method, the secondary air system was studied, and the results show that the exit velocity deviation rate of the secondary air system could less than 5% by adjusting the resistance of partial branch pipe. This improvement method is suitable for the new unit design.
引文
[1]莫鑫,蔡润夏,吕俊复,等.基于返料灰温偏差的600MW(e)循环流化床锅炉内气固不均匀分布[J].中国电机工程学报,2016,36(8):2175-2180.Mo Xin,Cai Runxia,LüJunfu,et al.Analysis of non-uniform distribution of gas-solid flow in the600MW(e)CFB boiler based on the non-uniform distribution of returning ash temperature[J].Proceedings of the CSEE,2016,36(8):2175-2180(in Chinese).
    [2]胡昌华,卢啸风.600MW超临界循环流化床锅炉设备与运行[M].北京:中国电力出版社,2012.Hu Changhua,Lu Xiaofeng.Equipment and operation of600MW supercritical circulating fluidized bed boiler[M].Beijing:China Electric Power Press,2012(in Chinese).
    [3]帅大平,吕清刚,王小芳,等.六分离器并联布置的双水冷柱炉膛循环流化床实验研究[J].中国电机工程学报,2016,36(3):723-728.Shuai Daping,Lv Qinggang,Wang Xiaofang,et al.Experimental study on a circulating fluidized bed with two water-cooled pillars and six cyclones[J].Proceedings of the CSEE,2016,36(3):723-728(in Chinese).
    [4]周星龙,谢建文,范永胜,等.大型循环流化床锅炉的发展现状与研究进展[C]//2013年中国电机工程学会年会论文集.北京:中国电机工程学会,2013.Zhou Xinglong,Xie Jianwen,Fan Yongsheng,et al.Development and research of large-scale circulating fluidized bed boiler[C]//Annual Meeting of CSEE.Beijing:Chinese Society For Electrical Engineering,2013(in Chinese).
    [5]Yue Guangxi,Yang Hairui,Lu Junfu,et al.Latest development of CFB boilers in China[C]//Proceedings of the 20th International Conference on Fluidized Bed Combustion.Xi’an,Beijing:Springer Press,2009:3-12.
    [6]岳光溪,吕俊复,徐鹏,等.循环流化床燃烧发展现状及前景分析[J].中国电力,2016,49(1):1-13.Yue Guangxi,Lv Junfu,Xu Peng,et al.The Up-To-Date development and future of circulating fluidized bed combustion technology[J].Electric Power,2016,49(1):1-13(in Chinese).
    [7]程乐鸣,许霖杰,夏云飞,等.600MW超临界循环流化床锅炉关键问题研究[J].中国电机工程学报,2015,35(21):5520-5532.Cheng Leming,Xu Linjie,Xia Yunfeng,et al.Key issues and solutions in development of the 600MW CFBboiler[J].Proceedings of the CSEE,2015,35(21):5520-5532(in Chinese).
    [8]Hupa M.Current status and challenges within fluidized bed combustion[M]//Syred N,Khalatov A.Advanced Combustion and Aerothermal Technologies.Dordrecht:Springer,2007:87-101.
    [9]Ersoy L E,Golriz M R,Koksal M,et al.Circulating fluidized bed hydrodynamics with air staging:an experimental study[J].Powder Technology,2004,145(1):25-33.
    [10]许霖杰,程乐鸣,邹阳军,等.1000MW超临界循环流化床锅炉环形炉膛气固流动特性数值模拟[J].中国电机工程学报,2015,35(10):2480-2486.Xu Linjie,Cheng Leming,Zou Yangjun,et al.Numerical study of gas-solids flow characteristics in a 1000MWsupercritical CFB boiler octagonal furnace[J].Proceedings of the CSEE,2015,35(10):2480-2486(in Chinese).
    [11]刘昀,刘德昌.阿尔斯通循环流化床锅炉的大型化发展[J].电力设备,2006,7(12):18-21.Liu Yun,Liu Dechang.Development of Alstom large size circulating fluidized bed boiler[J].Electrical Equipment,2006,7(12):18-21(in Chinese).
    [12]黄治坤.大型循环流化床锅炉燃烧优化研究[D].北京:华北电力大学,2011.Huang Zhikun.Research on combustion optimization of large CFB boiler[D].Beijing:North China Electric Power University,2011(in Chinese).
    [13]吴剑恒,何宏舟,俞金树.二次风对CFB锅炉NOx排放的影响[J].电力学报,2014,29(6):542-547,553.Wu Jianheng,He Hongzhou,Yu Jinshu.The influence on NOx emission of secondary-air in CFB boiler[J].Journal of Electric Power,2014,29(6):542-547,553(in Chinese).
    [14]王正阳,秦明,孙绍增,等.二次风分布对CFB锅炉炉内气固混合及燃烧的影响[J].热能动力工程,2009,24(2):205-210.Wang Zhengyang,Qin Ming,Sun Shaozeng,et al.Influence of secondary air distribution on the gas-solid mixing and combustion condition in a CFB(Circulating Fluidized Bed)boiler furnace[J].Journal of Engineering for Thermal Energy and Power,2009,24(2):205-210(in Chinese).
    [15]Kim J H,Shakourzadeh K.Analysis and modelling of solid flow in a closed loop circulating fluidized bed with secondary air injection[J].Powder Technology,2000,111(3):179-185.
    [16]Li Tingwen,Pougatch K,Salcudean M,et al.Mixing of secondary gas injection in a bubbling fluidized bed[J].Chemical Engineering Research and Design,2009,87(11):1451-1465.
    [17]郑成航,程乐鸣,周星龙,等.300 MW单炉膛循环流化床锅炉二次风射程的数值模拟[J].动力工程,2009,29(9):801-805,812.Zheng Chenghang,Cheng Leming,Zhou Xinglong,et al.Numerical simulation of secondary air penetration depth in a 300MW single-furnace circulating fluidized bed boiler[J].Journal of Power engineering,2009,29(9):801-805,812(in Chinese).
    [18]Zhong Wenqi,Zhang Mingyao.Jet penetration depth in a two-dimensional spout-fluid bed[J].Chemical Engineering Science,2005,60(2):315-327.
    [19]Knoebig T,Werther J.Horizontal reactant injection into large-scale fluidized bed reactors-modeling of secondary air injection into a circulating fluidized bed combustor[J].Chemical Engineering&Technology,1999,22(8):656-659.
    [20]常浩,原奇鑫,帅志昂,等.超临界循环流化床锅炉二次风射程的数值模拟研究[J].电站系统工程,2016,32(6):1-4.Chang Hao,Yuan Qixin,Shuai Zhiang,et al.Numerical simulation of secondary air penetration depth in supercrtical CFB boiler[J].Power System Engineering,2016,32(6):1-4(in Chinese).
    [21]鲁佳易.大型循环流化床锅炉物料平衡与热平衡特性实炉对比研究[D].重庆:重庆大学,2012.Lu Jiayi.Study on particle population balance and heat balance in large-scale circulating fluidized bed boilers[D].Chongqing:Chongqing University,2012(in Chinese).
    [22]孙献斌.循环流化床锅炉大型化的发展与应用[J].电站系统工程,2009,25(4):1-5.Sun Xianbin.Scaling-up development and application of circulating fluidized bed boiler[J].Power System Engineering,2009,25(4):1-5(in Chinese).
    [23]国家标准化管理委员会.GB/T 10184-1988电站锅炉性能试验规程[S].北京:中国标准出版社,1988.Standardization Administration of the People’S Republic of China.GB/T 10184-1988.Performance test code for utility boiler[S].Beijing:China Standards Press,1988.
    [24]孔珑.工程流体力学[M].3版.北京:中国电力出版社,2007.Kong Long.Engineering fluid mechanics[M].3rd ed.Beijing:China Electric Power Press,2007(in Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700