用户名: 密码: 验证码:
气溶胶直接辐射效应对全球陆地生态系统碳循环的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Impacts of Aerosol Direct Radiative Effect on Carbon Cycle in Global Terrestrial Ecosystem
  • 作者:邵思雅 ; 张晶 ; 周丽花 ; 乔岩
  • 英文作者:SHAO Si-ya;ZHANG Jing;ZHOU Li-hua;QIAO Yan;College of Global Change and Earth System Science,Beijing Normal University;Joint Center for Global Change Studies;
  • 关键词:气溶胶 ; 直接辐射效应 ; 散射施肥效应 ; 碳循环 ; 陆地生态系统
  • 英文关键词:aerosol;;direct radiative effect;;diffuse fertilization;;carbon cycle;;terrestrial ecosystem
  • 中文刊名:ZRZX
  • 英文刊名:Journal of Natural Resources
  • 机构:北京师范大学全球变化与地球系统科学研究院;全球变化与中国绿色发展协同创新中心;
  • 出版日期:2018-01-28
  • 出版单位:自然资源学报
  • 年:2018
  • 期:v.33
  • 基金:国家自然科学基金项目(41575144)~~
  • 语种:中文;
  • 页:ZRZX201801003
  • 页数:10
  • CN:01
  • ISSN:11-1912/N
  • 分类号:29-38
摘要
论文利用通用陆面模式CLM4.0-CN对全球陆地生态系统生物地球化学循环过程进行模拟,分析气溶胶直接辐射效应对全球陆地生态系统碳循环的影响。结果表明:气溶胶直接辐射效应使2007年全球陆地生态系统平均总初级生产力(GPP)、净初级生产力(NPP)、异养呼吸(R_H)、自养呼吸(R_A)以及净生态系统生产力(R_(eco))都呈现出增加的态势。具体的变化特征则随着地区不同而表现出极大的差异,在非洲中西部、中国中东部、美国东南部和欧洲中南部地区GPP增加,在南美洲亚马逊地区及东南亚等地区GPP减少。NPP和R_A与GPP的分布基本一致。分析发现,气溶胶直接辐射效应导致陆地生态系统碳循环发生变化有如下两方面原因:1)散射施肥效应,即植被阴生叶可以吸收的散射辐射(光合有效辐射)增加使其光合速率增加;2)辐射变化导致温度和湿度条件发生变化,从而改变植物生物物理和化学过程速率。
        The biogeochemical processes in global terrestrial ecosystem are studied using the Community Land Model(CLM),and the impacts of aerosol radiative effects on the carbon cycle in global terrestrial ecosystem are analyzed.Calculations show that the aerosol direct radiative effects caused the global averages of terrestrial gross primary productivity(GPP),net primary productivity(NPP),heterotrophic respiration(RH),autotrophic respiration(RA),and net ecosystem productivity(Reco) to increase in 2007,with significant spatial variations however.For instance,the GPP increased in the mid-west of Africa,the mid-east of China,the southeastern US and the mid-south of Europe,and decreased in the Amazonia of South America and the southeastern Asia.The NPP and RA showed similar spatial pattern as GPP did.The average changes of GPP,NPP,NEP,R_A,R_H and R_(eco) in 2007 were +6.47 g C·m~(-2)(+1.13%),+2.23 g C·m~(-2)(+0.98%),+0.34 g C·m~(-2)(+4.04%),+4.24 g C m~(-2)(+1.25%),+1.89 g C·m~(-2)(+0.86%),+ 6.13 g C · m-2(+ 1.13%),respectively.Simulations of canopy photosynthesis found that the photosynthetic carbon sequestration by sunlit and shaded leaves was also impacted by aerosols.The photosynthetic carbon sequestration by shaded leaves exhibited similar trend as GPP did,and its global average increased by 23.93 g C·m~(-2).The carbon sequestration by sunlit leaves decreased by a global average of-17.47 g C·m~(-2).Examinations of the carbon fluxes show that the aerosol direct radiative effects influence the carbon cycle in terrestrial ecosystem via the following two ways:first,the diffuse fertilization effect,i.e.more diffuse radiation being absorbed by shaded leaves of vegetation(photosynthetic active radiation,PAR) results in higher photosynthetic rates; second,the radiation changes lead to changes in temperature and humidity,thereby changing the rates of the plant biophysical and chemical processes.
引文
[1]WEBER U,JUNG M,REICHSTEIN M,et al.The inter-annual variability of Africa’s ecosystem productivity:A multimodel analysis[J].Biogeosciences,2009,6:285-295.
    [2]何学兆,周涛,贾根锁,等.光合有效辐射总量及其散射辐射比例变化对森林GPP影响的模拟[J].自然资源学报,2011,26(4):619-634.[HE X Z,ZHOU T,JIA G S,et al.Modeled effects of changes in the amount and diffuse fraction of PAR on forest GPP.Journal of Natural Resources,2011,26(4):619-634.]
    [3]STOCKER T F,QIN D H,PLATTNER G K,et al.Climate Change 2013:The Physical Science Basis[M].Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge,United Kingdom and New York,NY,USA:Cambridge University Press,2013.
    [4]RODERICK M L,FARQUHAR G D,BERRY S L,et al.On the direct effect of clouds and atmospheric particles on the productivity and structure of vegetation[J].Oecologia,2001,129(1):21-30.
    [5]FARQUHAR G D,RODERICK M L.Pinatubo,diffuse light,and the carbon cycle[J].Science,2003,299(5615):1997-1998.
    [6]GU L,BALDOCCHI D D,WOFSY S C,et al.Response of a deciduous forest to the Mount Pinatubo eruption:Enhanced photosynthesis[J].Science,2003,299(5615):2035-2038.
    [7]COHAN D S,XU J,GREENWALD R,et al.Impact of atmospheric aerosol light scattering and absorption on terrestrial net primary productivity[J].Global Biogeochemical Cycles,2002,16(4):31-37.
    [8]STEINER A L,CHAMEIDES W L.Aerosol-induced thermal effects increase modelled terrestrial photosynthesis and transpiration[J].Tellus Series B—Chemical&Physical Meteorology,2005,57(5):404-411.
    [9]MATSUI T,BELTRáN-PRZEKURAT A,NIYOGI D,et al.Aerosol light scattering effect on terrestrial plant productivity and energy fluxes over the eastern United States[J].Journal of Geophysical Research:Atmospheres,2008,113(D14):762-770.
    [10]XI X,SOKOLIK I N.Impact of Asian dust aerosol and surface albedo on photosynthetically active radiation and surface radiative balance in dryland ecosystems[J].Advances in Meteorology,2012,2012:978-988.
    [11]STEINER A L,MERMELSTEIN D,CHENG S J,et al.Observed impact of atmospheric aerosols on the surface energy budget[J].Earth Interactions,2013,17:1009-1032.doi:10.1175/2013EI000523.1.
    [12]CHEN M,ZHUANG Q.Evaluating aerosol direct radiative effects on global terrestrial ecosystem carbon dynamics from 2003 to 2010[J].Tellus Series B—Chemical&Physical Meteorology,2014,66(1):81-89.
    [13]KANNIAH K D,BERINGER J,NORTH P,et al.Control of atmospheric particles on diffuse radiation and terrestrial plant productivity:A review[J].Progress in Physical Geography,2012,36(2):209-237.
    [14]CAO J,SHEN Z,CHOW J C,et al.Winter and summer PM 2.5 chemical compositions in fourteen Chinese cities[J].Journal of the Air&Waste Management Association,2012,62(10):1214-1226.
    [15]MATSUI H,KOIKE M,KONDO Y,et al.Spatial and temporal variations of aerosols around Beijing in summer 2006:Model evaluation and source apportionment[J].Journal of Geophysical Research:Atmospheres,2009,114(D2):4427-4433.
    [16]TIE X X,CAO J J.Aerosol pollution in China:Present and future impact on environment[J].Particuology,2009,7(6):426-431.
    [17]OLESON K W,LAWRENCE D M,GORDON B,et al.Technical description of version 4.0 of the Community Land Model(CLM)[J].Geophysical Research Letters,2010,37(7):256-265.
    [18]LAWRENCE D M,OLESON K W,FLANNER M G,et al.The CCSM4 land simulation,1850-2005:Assessment of surface climate and new capabilities[J].Journal of Climate,2012,25(7):2240-2260.
    [19]邵思雅,张晶,周丽花,等.基于Fu-Liou辐射传输模式和卫星观测资料的气溶胶对全球地表太阳辐射影响的研究[J].资源科学,2017,39(3):513-521.[SHAO S Y,ZHANG J,ZHOU L H,et al.Aerosol effects on global surface solar radiation based on Fu-Liou modeling and satellite observations.Resources Science,2017,39(3):513-521.]
    [20]FARQUHAR G D,von CAEMMERER S,BERRY J A,et al.A biochemical model of photosynthetic CO2assimilation in leaves of C3 species[J].Planta,1980,149:78-90.
    [21]COLLATZ G J,RIBAS-CARBO M,BERRY J A.Coupled photosynthesis-stomatal conductance model for leaves of C4plants[J].Functional Plant Biology,1992,19(5):519-538.
    [22]LAWRENCE P J,CHASE T N.Representing a new MODIS consistent land surface in the Community Land Model(CLM 3.0)[J].Journal of Geophysical Research:Atmospheres,2007,112(G1):252-257.
    [23]KNOHL A,BALDOCCHI D D.Effects of diffuse radiation on canopy gas exchange processes in a forest ecosystem[J].Journal of Geophysical Research:Biogeosciences,2008,113(G2):143-144.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700