用户名: 密码: 验证码:
黄土区坡面尺度不同植被类型土壤饱和导水率剖面分布及影响因素
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Profile Distribution of Soil Saturated Hydraulic Conductivity and Controlling Factors Under Different Vegetations on Slope in Loess Region
  • 作者:毛娜 ; 黄来明 ; 邵明安
  • 英文作者:MAO Na;HUANG Laiming;SHAO Ming'an;Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences;State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources;College of Resources and Environment, University of Chinese Academy of Sciences;College of Natural Resources and Environment, Northwest A & F University;
  • 关键词:饱和导水率 ; 剖面分布 ; 影响因素 ; 植被类型 ; 六道沟小流域
  • 英文关键词:Saturated hydraulic conductivity (K_s);;Profile distribution;;Influential factors;;Vegetation types;;Liudaogou watershed
  • 中文刊名:TURA
  • 英文刊名:Soils
  • 机构:中国科学院地理科学与资源研究所中国科学院生态系统网络观测与模拟重点实验室;中国科学院水利部水土保持研究所黄土高原土壤侵蚀与旱地农业国家重点实验室;中国科学院大学资源与环境学院;西北农林科技大学资源环境学院;
  • 出版日期:2019-04-15
  • 出版单位:土壤
  • 年:2019
  • 期:v.51;No.300
  • 基金:国家自然科学基金青年基金项目(41601221);; 国家重点研发计划重点专项项目(2016YFC0501605);; 中国科学院水土保持研究所黄土高原土壤侵蚀与旱地农业国家重点实验室开放基金项目(A314021402-1602)资助
  • 语种:中文;
  • 页:TURA201902024
  • 页数:9
  • CN:02
  • ISSN:32-1118/P
  • 分类号:173-181
摘要
土壤饱和导水率(K_s)是影响水、溶质运移过程和水文模型模拟精度的重要参数,了解坡面尺度下不同植被类型K_s的剖面分布与影响因素有助于更好地理解土壤水文过程及其调控机制。本研究通过测定典型黄土区坡面尺度不同植被类型下12个土壤剖面(0~200 cm)的K_s及土壤基本性质,分析了不同坡向间及同一坡向内随植被类型变化土壤K_s的剖面分布特征及其影响因素。结果表明:不同植被类型下土壤K_s首先随着土壤深度的增加而减小,而后呈增大趋势。东北坡林地、西坡草地和林地剖面上层(0~20 cm)的平均土壤K_s(K_(s-average))均显著高于剖面下层(20~200 cm)(P<0.05)。同一坡向内不同植被类型及不同坡向间相同植被类型0~20 cm土层的K_(s-average)没有显著差异(P>0.05);而由于土壤质地和有机质含量的差异,20~200 cm土层的K_(s-average)表现为同一坡向内东北坡草地显著高于林地(P<0.05),不同坡向间东北坡草地和林地分别显著高于西坡草地和林地(P<0.05)。六道沟小流域不同植被类型下土壤K_s与容重、黏粒含量、粉粒含量呈极显著负相关(P<0.001),与毛管孔隙度、饱和含水量、砂粒以及有机质含量(西坡草地除外)呈显著正相关(P<0.05)。影响六道沟小流域K_s剖面分布的因素可由土壤持水特性(49.36%)、质地(24.98%)和养分含量(13.92%) 3个主成分贡献。本研究利用多元逐步回归分析获得了以容重、土壤质地和有机质为输入因子的土壤K_s传递函数(R~2=0.60~0.86,P<0.001),可为典型黄土区坡面尺度土壤K_s的模拟和预测提供参考。
        Soil saturated hydraulic conductivity(K_s) is an important parameter influencing hydrological processes and the accuracy of hydrological model simulation. Understanding the profile distribution of K_s and their controlling factors under different vegetations at the slope scale are conductive to better understand the hydrological process and its regulation mechanism.In this study, the K_s and soil basic properties were measured of 12 profiles(0–200 cm) under different vegetations on slopes.These profiles were chosen according to different vegetations(grassland and forestland) and different slope aspects(northeast orientation and west orientation). The objective of this study is to examine the changes in the vertical distribution of K_s and to identify the main controlling factors for the variations of K_s at the slope scale in a relative small region. The results showed that K_s under different vegetations decreased initially with depth and then tended to increase downward, and the average values of K_s(K_(s-average)) in 0–20 cm soil layer were significantly higher than that in 20–200 cm soil layer(P < 0.05). There were no significant differences of the K_(s-average) in 0–20 cm soil layer among different vegetation types in the same slope as well as between different slopes for the same vegetation type(P > 0.05). However, due to the differences of soil texture and organic matter, the K_(s-average) in20–200 cm soil layer under grassland was higher than that under forestland in the northeast organization slope, and the K_(s-average) in20–200 cm soil layer in northeast orientation slope was higher than that in west orientation slope whether under grassland or forestland(P < 0.05). K_s under different vegetations were positively correlated with capillary porosity, saturated water content,sand and organic matter(except grassland in the west orientation slope)(P < 0.05), but were negatively correlated with bulk density, clay and silt content(P < 0.05). The factors influencing K_s can be attributed to three principal components: soil water retention capacity(49.36%), soil texture(24.98%) and soil fertility characteristic(13.92%). Based on the effects of soil properties,the pedotransfer functions(PTFs) of K_s under different vegetations were proposed by using multiple stepwise regression analysis.The PTFs with inputs of bulk density, soil texture and organic matter had a better fitting ability of K_s(R~2 = 0.60 – 0.86,P < 0.001),which could be used as a reference for the simulation and prediction of K_s at the slope scale in Liudaogou watershed.
引文
[1]廖凯华,徐绍辉,吴吉春,等.土壤饱和导水率空间预测的不确定性分析[J].水科学进展,2012,23(2):200-205
    [2]Fodor N,Sandor R,Orfanus T,et al.Evaluation method dependency of measured saturated hydraulic conductivity[J].Geoderma,2015,165(1):60-68
    [3]Wang T J,Istanbulluoglu E,Wedin D,et al.Impacts of devegetation on the temporal evolution of soil saturated hydraulic conductivity in a vegetated sand dune area[J].Environmental Earth Sciences,2015,73(11):1-10
    [4]吕殿青,邵明安,刘春平.容重对土壤饱和水分运动参数的影响[J].水土保持学报,2006,20(3):154-157
    [5]Pachepsky Y,Park Y.Saturated hydraulic conductivity of US soils grouped according to textural class and bulk density[J].Soil Science Society of America Journal,2017,79(4):1094-1100
    [6]迟春明,王志春.沙粒对碱土饱和导水率和盐分淋洗的影响[J].水土保持学报,2009,23(1):99-102
    [7]Novak V,Kňava K,?im?nek J.Determining the influence of stones on hydraulic conductivity of saturated soils using numerical method[J].Geoderma,2011,161(3):177-181
    [8]周蓓蓓,邵明安.土石混合介质饱和导水率的研究[J].水土保持学报,2006,20(6):62-66
    [9]Lado M,Paz A,Benhur M.Organic matter and aggregatesize interactions in saturated hydraulic conductivity[J].Soil Science Society of America Journal,2004,68(1):234-242
    [10]Wallage Z E,Holden J.Near-surface macropore flow and saturated hydraulic conductivity in drained and restored blanket peatlands[J].Soil Use&Management,2011,27(2):247-254
    [11]秦耀东,胡克林.大孔隙对农田耕作层饱和导水率的影响[J].水科学进展,1998,9(2):107-111
    [12]Kelishadi H,Mosaddeghi M R,Hajabbasi M A,et al.Near-saturated soil hydraulic properties as influenced by land use management systems in Koohrang region of central Zagros,Iran[J].Geoderma,2014,213(1):426-434
    [13]Wang T J,Zlotnik V,Wedin D A,et al.Spatial trends in saturated hydraulic conductivity of vegetated dunes in the Nebraska Sand Hills:Effects of depth and topography[J].Journal of Hydrology,2008,349(1/2):88-97
    [14]Fu T G,Chen H S,Zhang W,et al.Spatial variability of surface soil saturated hydraulic conductivity in a small karst catchment of southwest China[J].Environmental Earth Sciences,2015,74(3):2381-2391
    [15]彭舜磊,由文辉,沈会涛.植被群落演替对土壤饱和导水率的影响[J].农业工程学报,2010,26(11):78-84
    [16]廖凯华,徐绍辉,程桂福.大沽河流域土壤饱和导水率空间变异特征[J].土壤,2009,41(1):147-151
    [17]傅子洹,王云强,安芷生.黄土区小流域土壤容重和饱和导水率的时空动态特征[J].农业工程学报,2015,31(13):128-134
    [18]Lewis C,Albertson J D,Xu X L,et al.Spatial variability of hydraulic conductivity and bulk density along a blanket peatland hillslope[J].Hydrological Processes,2012,26(10):1527-1537
    [19]Papanicolaou T,Elhakeem M,Wilson C G,et al.Spatial variability of saturated hydraulic conductivity at the hillslope scale:Understanding the role of land management and erosional effect[J].Geoderma,2015,243/244(243):58-68
    [20]Gwenzi W,Hinz C,Holmes K W,et al.Field-scale spatial variability of saturated hydraulic conductivity on a recently constructed artificial ecosystem[J].Geoderma,2011,166(1):43-56
    [21]Rienzner M,Gandolfi C.Investigation of spatial and temporal variability of saturated soil hydraulic conductivity at the field-scale[J].Soil&Tillage Research,2014,135:28-40
    [22]白一茹,王幼奇,王菲,等.压砂地土壤导水特性空间格局及影响因子[J].干旱地区农业研究,2016,34(4):55-61
    [23]梁向锋,赵世伟,张扬,等.子午岭植被恢复对土壤饱和导水率的影响[J].生态学报,2009,29(2):636-642
    [24]Coquet Y,Vachier P,Labat C.Vertical variation of nearsaturated hydraulic conductivity in three soil profiles[J].Geoderma,2005,126(3/4):181-191
    [25]姚淑霞,赵传成,张铜会.科尔沁不同沙地土壤饱和导水率比较研究[J].土壤学报,2013,50(3):469-477
    [26]Schwen A,Zimmermann M,Bodner G.Vertical variations of soil hydraulic properties within two soil profiles and its relevance for soil water simulations[J].Journal of Hydrology,2014,516(516):169-181
    [27]刘东生.黃土与环境[M].北京:科学出版社,1985:7-12
    [28]Fares A,Kumar A A,Nkedi-kizza P,et al.Estimation of soil hydraulic properties of a sandy soil using capacitance probes and Guelph permeameter[J].Soil Science,2000,165(10):768-777
    [29]Chen L C,Wei W,Fu B J,et al.Soil and water conservation on the Loess Plateau in China:Review and perspective[J].Progress in Physical Geography,2007,31(4):389-403
    [30]郑纪勇,邵明安,张兴昌.黄土区坡面表层土壤容重和饱和导水率空间变异特征[J].水土保持学报,2004,18(3):53-56
    [31]Hu W,Shao M A,Si B C.Seasonal changes in surface bulk density and saturated hydraulic conductivity of natural landscapes[J].European Journal of Soil Science,2012,63(6):820-830
    [32]Zhou B B,Shao M A,Shao H B.Effects of rock fragments on water movement and solute transport in a Loess Plateau soil[J].Comptes Rendus-Géoscience,2009,341(6):462-472
    [33]Wang Y Q,Shao M A,Liu Z P,et al.Regional-scale variation and distribution patterns of soil saturated hydraulic conductivities in surface and subsurface layers in the loessial soils of China[J].Journal of Hydrology,2013,487(2):13-23
    [34]于国强,李占斌,李鹏,等.不同植被类型的坡面径流侵蚀产沙试验研究[J].水科学进展,2010,21(5):593-599
    [35]中华人民共和国国家林业局.森林土壤水分-物理性质的测定:LY/T 1215-1999[S].北京:标准出版社,1999
    [36]史瑞和,鲍士旦,秦怀英.土壤农化分析[M].北京:农业出版社,1981
    [37]董浩,陈雨海,周勋波.灌溉和种植方式对冬小麦耗水特性及干物质生产的影响[J].应用生态学报,2013,24(7):1871-1878
    [38]张莉,吴斌,丁国栋,等.毛乌素沙地沙柳与柠条根系分布特征对比[J].干旱区资源与环境,2010,24(3):158-161
    [39]Tranter G,Minasny B,Mcbratney A B,et al.Building and testing conceptual and empirical models for predicting soil bulk density[J].Soil Use&Management,2007,23(4):437-443
    [40]董炜华,李晓强,宋扬.土壤动物在土壤有机质形成中的作用[J].土壤,2016,48(2):211-218
    [41]邹文秀,韩晓增,陆欣春,等.不同土地利用方式方式对黑土剖面土壤物理性质的影响[J].水土保持学报,2015,29(5):187-193
    [42]Zhang F,Wang X J,Guo T W,et al.Soil organic and inorganic carbon in the loess profiles of Lanzhou area:Implications of deep soils[J].Catena,2015,126:68-74
    [43]付同刚,陈洪松,王克林.喀斯特小流域土壤饱和导水率垂直分布特征[J].土壤学报,2015,52(3):538-546
    [44]刘春利,邵明安.黄土高原六道沟流域不同植被类型下土壤水力特性及其对土壤水分的影响[J].应用生态学报,2008,19(11):2400-2407
    [45]李志,刘文兆,王秋贤.黄土塬区不同地形部位和植被类型方式对土壤物理性质的影响[J].应用生态学报,2008,19(6):1303-1308
    [46]Li Y Y,Shao M A.Change of soil physical properties under long-term natural vegetation restoration in the Loess Plateau of China[J].Journal of Arid Environments,2006,64(1):77-96
    [47]吴才武,夏建新,段峥嵘.土壤有机质测定方法述评与展望[J].土壤,2015,47(3):453-460
    [48]方堃,陈效民,张佳宝,等.红壤地区典型农田土壤饱和导水率及其影响因素研究[J].灌溉排水学报,2008,27(4):67-69
    [49]Zhao C L,Shao M A,Jia X X,et al.Using pedotransfer functions to estimate soil hydraulic conductivity in the Loess Plateau of China[J].Catena,2016,143(143):1-6
    [50]李孝良,陈效民,周炼川,等.西南喀斯特地区土壤饱和导水率及其影响因素研究[J].灌溉排水学报,2008,27(5):74-76
    [51]吴华山,陈效民,叶民标,等.太湖地区主要水稻土的饱和导水率及其影响因素研究[J].灌溉排水学报,2006,25(2):46-49
    [52]姚荣江,张同娟,李芙荣,等.滩涂围垦农田土壤饱和导水率的影响因素及转换函数研究[J].中国生态农业学报,2014,22(7):790-797

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700