用户名: 密码: 验证码:
猪粪稻秸超高温预处理促进后续堆肥腐殖化条件优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Optimization of conditions for promotion of humic substance formation during subsequent composting with hythermal pretreatment for pig manure and rice straw
  • 作者:曹云 ; 黄红英 ; 吴华山 ; 徐跃定 ; 常志州
  • 英文作者:CAO Yun;HUANG Hong-ying;WU Hua-shan;XU Yue-ding;CHANG Zhi-zhou;Circular Agricultural Research Center,Jiangsu Academy of Agricultural Sciences, Key Laboratory of Crop and Livestock Integrated Farming, Ministry of Agriculture;
  • 关键词:堆肥 ; 腐殖质 ; 前体物质 ; 正交试验
  • 英文关键词:compost;;humic substance;;precursors;;orthogonal test
  • 中文刊名:ZGHJ
  • 英文刊名:China Environmental Science
  • 机构:江苏省农业科学院循环农业研究中心农业部种养结合重点实验室;
  • 出版日期:2019-05-20
  • 出版单位:中国环境科学
  • 年:2019
  • 期:v.39
  • 基金:国家水体污染控制与治理科技重大专项(2017ZX07202004);; 国家自然科学基金资助项目(41701340);; 江苏省农业自主创新项目(CX(17)2024);; 南京市农业科技产学研合作示范项目(2018RHJD11)
  • 语种:中文;
  • 页:ZGHJ201905039
  • 页数:8
  • CN:05
  • ISSN:11-2201/X
  • 分类号:265-272
摘要
以猪粪稻秸为原料,设计超高温预处理温度(75,85,95℃)、时间(2,4,8h)和通风量(0.3,0.6,0.9L/kgTS·h)的三因素三水平正交试验,研究不同超高温预处理条件对猪粪稻秸理化特性及后续模拟堆肥腐殖质生成的影响,结果表明,温度、时间和通气量对猪粪稻秸后续高温堆肥腐殖化系数影响各不相同,各因素对后续好氧发酵累腐殖化系数的影响大小顺序为大小顺序为预处理时间>温度>通气量;最佳超高温预处理条件为:预处理温度为95℃,停留时间为4h,通气量为0.6L/(kgTS·h),与CK相比,最佳预处理参数下猪粪稻秸后续高温发酵60d腐殖化系数提高119%,腐殖质、胡敏酸含量分别增加105%、116%,而富里酸含量降低17.2%,结合预处理前后物料理化特性变化规律分析,表明超高温预处理促进了大分子有机物降解为可溶性有机碳,促进了木质纤维素组分降解溶出,促使其更多转化为多酚,同时增加了腐殖质前体还原糖、氨基酸的含量,从而有利于腐殖质的生成.
        The influences of hyperthermophilic pretreatment on physico-chemical properties and the formation of humic substances during the subsequent composting of pig manure and rice straw were investigated using an orthogonal experiment, The orthogonal experiment containing three factors, each with three levels, were conducted under different temperatures(75, 85, 95°C), heating intervals(2, 4, 8 h) and ventilation(0.3, 0.6, 0.9 L/kg TS·h), The results showed these three factors had different effects on the humification coefficient of the subsequent aerobic composting, The size of effects on the humification coefficient during the subsequent aerobic composting was in the order of pretreatment time, followed by temperature ventilation, The optimal hyperthermal pretreatment conditions were: 95°C for the temperature, 4 h for the heating time and the aeration rate was 0.6 L/kg TS·h, Compared with the control(CK), the humification coefficient of subsequent composting with pig manure and rice straw was increased by 119%under the optimal pretreatment conditions, The contents of total humic substance and humic acid were increased by 105% and 116%,respectively, while the fulvic acid content was decreased by 17.2%, Based on the variations of the physico-chemical characteristics before and after hyperthermal pretreatment, the results suggested that the hyperthermal pretreatment could promote the degradation of macromolecular organic matter into soluble organic carbon and degrade lignocellulosic components into to polyphenols, The precursors, such as the reduced sugars and amino acids, were also increased, which would in turn facilitate the formation of humic substances in composting.
引文
[1]仇焕广,升月,廖绍攀,等.我国畜禽污染现状与治理政策的有效性分析[J].中国环境科学,2013,33(12):2268-2273.Qiu H G, Jin Y, Liao S P, et al. Environmental pollution of livestock and the effectiveness of different management policies in China[J].China Environmental Science, 2013,33(12):2268-2273.
    [2]席北斗.有机固体废弃物管理与资源化技术[M].北京:国防工业出版社,2006:141-146.Xi B D. Resource and management technology of organic solid waste[M]. Beijing, National Defense Industry Press, 2006:141-146.
    [3] Wang Q,Li R, Cai H,et al. Improving pig manure composting efficiency employing Ca-bentonite[J]. Ecological Engineering, 2016,87:157-161.
    [4] Wang Q, Mukesh K A, Zhao J, et al. Improvement of pig manure compost lignocellulose degradation, organic matter humification and compost quality with medical stone[J]. Bioresource Technology, 2017,243:771-777.
    [5] Jurado M M, Suarez-Estrella F, Lopez M J, et al. Enhanced turnover of organic matter fractions by microbial stimulation during lignocellulosic waste composting[J]. Bioresource Technology, 2015,186:15-24.
    [6] Liu N,Zhou J,Han L,et al. Characterization of lignocellulosic compositions'degradation during chicken manure composting with added biochar by phospholipid fatty acid(PLFA)and correlation analysis[J]. Science of the Total Environment, 2017,586:1003-1011.
    [7]曹云,黄红英,钱玉婷,等.超高温预处理装置及其促进鸡粪稻秸好氧堆肥腐熟效果[J].农业工程学报,2017,33(13):243-250.Cao Y, Huang H Y, Qian Y T, et al. Hyperthermophilic pretreatment device and its application on improving decomposition effect for chicken manure and rice straw aerobic composting[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2017,33(13):243-250.
    [8]曹云,黄红英,孙金金,等,超高温预处理对猪粪堆肥过程碳氮素转化与损失的影响[J].中国环境科学,2018,38(5):1792-1800.Cao Y, Huang H Y, Sun J J, et al. Effect of hyperthermerphilic pretreatment on transformation and losses of C and N during pig manure composting[J]. China Environmental Science, 2018,38(5):1792-1800.
    [9]朱金龙,魏自民,贾璇,等.湿热水解预处理对餐厨废弃物液相物质转化的影响[J].环境科学研究,2015,28(3):440-446.Zhu J L,Wei Z M,Jia X, et al. Impacts of liquid substances transformation of kitchen waste with hydrothermal pretreatment[J].Research of Environmental Sciences, 2015,28(3):440-446.
    [10] Ding L, Cheng J, Qiao D, et al. Investigating hydrothermal pretreatment of food waste for two-stage fermentative hydrogen and methaneco-production[J]. Bioresource Technology, 2017,241:491-499.
    [11] Yuan J,Yang Q,Zhang Z, et al. Use of additive and pretreatment to control odors in municipal kitchen waste during aerobic composting[J]. Journal of Environmental Sciences, 2015,37:83-90.
    [12] Yamada T, Miyauchi K, Ueda H, et al. Composting cattle dung wastes by using a hyperthermophilic pre-treatment process:characterization by physicochemical and molecular biological analysis[J]. Journal of Bioscience and Bioengineering, 2007,104(5):408-415.
    [13] Yu Z, Tang J, Liao H, et al. The distinctive microbial community improves composting efficiency in a full-scale hyperthermophilic composting plant[J]. Bioresource Technology, 2018,265:146-154.
    [14] Nakasaki K, Hidehira H, Temperature control strategy to enhance the activity of yeast inoculated into compost raw material for accelerated composting[J]. Waste Management, 2017,65:29-36.
    [15] Wei Y, Wu D, Wei D, et al. Improved lignocellulose-degrading performance during straw composting from diverse sources with actinomycetes inoculation by regulating the key enzyme activities[J].Bioresource Technology, 2019,271:66-74.
    [16]王文平.植物样品中游离氨基酸总量测定方法的改进[J].北京农学院学报,1998,13(3):9-13.Wang W P. Improving the method for determining the total dissociative amino acid in fresh plant tissue[J]. Journal of Beijing Agricultural College,1998,13(3):9-13.
    [17]廖祥兵,陈晓明,肖伟,等.DNS法定量测定还原糖的波长选择[J].中国农学通报,2017,33(15):144-149.Liao X B, Chen X M, Xiao W, et al. The wavelength selection of reducing sugar quantitatively determined by DNS Method[J]. Chinese Agricultural Science Bulletin, 2017,33(15):144-149
    [18]吴萼,徐宁,温美娟.磷钼酸-磷钨酸盐比色法测定土壤中总酚酸含量[J].环境化学,2000,19(1):67-72.Wu E, Xu N, Wen M J. The measurement of total phenolic acids in soil by phosphomolybdic-phosphotungstic acid phenol reagent colorimetry[J]. Environmental Chemistry, 2000,19(1):67-72.
    [19]杜静,陈广银,黄红英,等,温和湿热预处理对稻秸理化特性及生物产沼气的影响[J].中国环境科学,2016,36(2):485-491.Du J, Chen G Y, Huang H Y, et al. Effect of mild hydrothermal pretreatment on characteristics of anaerobic digestion and physicochemical properties of rice straw[J]. China Environmental Science,2016,36(2):485-491.
    [20]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000.Bao S D. Soil agricultural and chemical analysis[M]. Beijing, China Agricultural Press, 2000.
    [21]李波,叶菁,刘岑薇,等.生物炭添加对猪粪堆肥过程碳素转化与损失的影响[J].环境科学学报,2017,37(9):3511-3518.Li B, Ye J, Liu C W, et al. Effects of biochar addition on carbon transformation during composting of pig manure[J]. Acta Scientiae Circumstantiae, 2017,37(9):3 511-3518.
    [22] Bernal M P, Alburquerque J A, Moral R. Composting of animal manures and chemical criteria for compost maturity assessment,A review[J]. Bioresource Technology,2009,100(22):5444-5453.
    [23] Adahi F, Genevini P L, Crasperi F, et al. A new index of organic matter stability, Compost Sci Uti, 1995,3(2):25-37.
    [24] Kanazawa S, Ishikawa Y, Tomita-Yokotani K, et al. Space agriculture for habitation on Mars with hyper thermophilic aerobic composting bacteria[J]. Advanced Space Research,2008,41(5):696-700.
    [25]李国学,张福锁.固体废物堆肥化与复混肥生产[M].北京:化学工业出版社,2000.Li G X, Zhang F S. Solid waste composting and compound fertilizer production[M]. Beijing, Chemical Industry Press, 2000.
    [26]魏自民,王世平,席北斗,等.生活垃圾堆肥过程中腐殖质及有机态氮组分的变化[J].环境科学学报,2007,27(2):235-240.Wei Z M, Wang S P, Xi B D, et al. Changes of hum ic subs tan ces and organic nitrogen forms during municipal solid waste composting[J].Acta Scientiae Circumstantiae, 27(2):235-240.
    [27] Zhou Y,Ammaiyappan S,Wong J W C. Evaluation of humic substances during co-composting of food waste, sawdust and Chinese medicinal herbal residues[J]. Bioresource Technology, 2014,168:229-234.
    [28] Bustamante M A, Paredes C, Marhuenda-Egea F C, et al. Cocomposting of distillery wastes with animal manures:Carbon and nitrogen transformations in the evaluation of compost stability[J].Chemosphere, 2008,72:551-557.
    [29] Nakhshiniev B, Biddinika M K, Gonzales H B, et al. Evaluation of hydrothermal treatment in enhancing rice straw compost stability and maturity[J]. Bioresource Technology, 2014,151:306-313.
    [30] Wu J, Zhao Y, Zhao W, et al. Effect of precursors combined with bacteria communities on the formation of humic substances during different materials composting[J]. Bioresource Technology, 2017,226:191-199.
    [31] Stevenson F J, Humic Chemistry:Genesis, composition, Reactions[M]. John Wiley and Sons, New York, 1994.
    [32] Zhou Y, Selvam A, Wong J W C. Evaluation of humic substances during co-composting of food waste,sawdust and Chinese medicinal herbal residues[J]. Bioresource Technology, 2014,168:229-234.
    [33] Wang C, Tu Q, Dong D, et al. Spectroscopic evidence for biochar amendment promoting humicacid synthesis and intensifying humification during composting[J]. Journal of Hazardous Materials,2014,280(15):409-416.
    [34]魏自民,吴俊秋,赵越,等.堆肥过程中氨基酸的产生及其对腐植酸形成的影响[J].环境工程技术学报,2016,6(4):377-383.Wei Z M, Wu J Q, Zhao Y, et al. Production of amino acids and its effect on the formation of humic acids during composting[J]. Journal of Environmental Engineering Technology, 2016,6(4):3 77-383.
    [35] Cao Y,Chang Z,Wang J,et al. The fate of antagonistic microorganisms and antimicrobial substances during anaerobic digestion of pig and dairy manure[J]. Bioresource Technology, 2013,136:664-671.
    [36] Baddi G A, Cegarra J, Merlina G, et al. Qualitative and quantitative evolution of poly phenolic compounds during composting of an olivemill waste-wheat straw mixture[J]. Journal of Hazardous Materials,2009,165(1-3):1119-1123.
    [37]郭小夏,刘洪涛,常志州,等.有机废物好氧发酵腐殖质形成机理及农学效应研究进展[J].生态与农村环境学报,2018,34(6):489-498.Guo X X, Liu H T, Chagn Z Z, et al. Review of Humic Substances Developed in Organic Waste Aerobic Composting and Its Agronomic Effect[J]. Journal of Ecology and Rural Environment, 2018,34(6):489-498.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700