用户名: 密码: 验证码:
纳米孔道单分子电化学测量的低噪音控温系统研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A Low Noise Temperature Control System for Nanopore-Based Single Molecule Analysis
  • 作者:杨铖宇 ; 顾震 ; 胡正利 ; 应佚伦 ; 龙亿涛
  • 英文作者:YANG Cheng-yu;GU Zhen;HU Zheng-li;YING Yi-lun;LONG Yi-tao;School of Chemistry & Molecular Engineering, East China University of Science and Technology;State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University;
  • 关键词:纳米孔道 ; 电化学 ; 单分子检测 ; 单分子界面 ; 控温系统 ; 低噪音电分析测量
  • 英文关键词:nanopore;;electrochemistry;;single bio-molecule detection;;single bio-molecule interface;;temperature control system;;low noise measurement
  • 中文刊名:DHXX
  • 英文刊名:Journal of Electrochemistry
  • 机构:华东理工大学化学与分子工程学院;南京大学化学化工学院生命分析化学国家重点实验室;
  • 出版日期:2019-06-28
  • 出版单位:电化学
  • 年:2019
  • 期:v.25;No.113
  • 基金:国家自然科学基金项目(Nos.21834001,61871183);; 上海市教育委员会科研创新计划(No.2017-01-07-00-02-E00023);; 上海市启明星计划(No.19QA1402300);; 上海市教育委员会和上海教育发展基金会支持的“晨光”项目(No.17CG27)资助
  • 语种:中文;
  • 页:DHXX201903003
  • 页数:7
  • CN:03
  • ISSN:35-1172/O6
  • 分类号:25-31
摘要
纳米孔道检测技术是一种利用单个分子测量界面实现在单分子水平上测量DNA、RNA、蛋白、多肽等生物分子的高灵敏的单分子检测技术.由于单个分子与纳米孔道的相互作用受热力学控制,亟需精准控制纳米孔道单分子分析的实验温度.因此,本文研制了一种低噪音控温系统用于具有皮安级电流分辨的纳米孔道单分子实验,以实现精确调控测量时的环境温度.该系统利用半导体制冷片的热电效应对检测池环境加热/制冷,通过对高精度热敏电阻进行电磁屏蔽以实现在温度反馈的同时避免噪音的引入.利用比例-积分-微分算法进行控制,达到高精度快速控温的要求.该系统控温精度为±1°C,无额外噪音引入至超灵敏纳米孔道单分子测量,获得了25°C到5°C下Poly(dA)5与单个气单胞菌溶素(Aerolysin)分子界面间作用产生信号的差异,应用于研究单分子与纳米孔道相互作用的热力学行为.
        Nanopore employs a single bio-molecule interface, which is a highly sensitive single-molecule detection technology for measuring single biomolecules such as DNA, RNA, protein, and peptide. The interaction between single molecule and nanopore is thermodynamically controlled. Therefore, it is urgent to precisely control the temperature of the nanopore system without introduction of any noise. In this paper, we have developed a low-noise temperature control system for single-molecule detection of nanopores to achieve precise regulation at the ambient temperature during measurements. The system utilizes the thermoelectric effect of the semiconductor refrigerating chip to heat or cool the detection chamber, while adopts electromagnetically shielded high-precision thermistor to achieve the temperature feedback which avoids the introduction of noise at the same time. The proportional-integral-differential algorithm is used to provide the high-precision and rapid temperature control. The system was further applied in measuring the interaction between Poly(d A)5 and aerolysin nanopore at 25 oC to 5 oC. This system could be used to characterize the thermodynamic and kinetic information of the single molecules.
引文
[1]Kasianowicz J J,Brandin E,Branton D,et al.Characterization of individual polynucleotide molecules using a membrane channel[J].Proceedings of the National Academy of Sciences,1996,93(24):13770-13773.
    [2]Ying Y L(应佚伦),Zhang X(张星),Liu Y(刘钰),et al.Single molecule study of the weak biological interactions between p53 and DNA[J].Acta Chimica Sinica(化学学报),2013,71(1):44-50.
    [3]Yang J(杨洁),Li S(李爽),Wu X Y(武雪原),et al.Development of biological nanopore technique in non-gene sequencing application[J].Chinese Journal of Analytical Chemistry(分析化学),2017,45(12):1766-1775.
    [4]Li Z P(李作鹏),Wen Y Q(温雅琼),Wu M X(武美霞),et al.Electrochemical behavior of ionic liquid confined into nanopores of silica gel matrix[J].Journal of Electrochemistry(电化学),2014,20(2):121-127.
    [5]Lin Y(林瑶),Ying Y L(应佚伦),Gao R(高瑞),et al.Analysis of single-entity anisotropy with a solid-state nanopore[J].Acta Chimica Sinica(化学学报),2017,75(7):675-678.
    [6]Li Q(李巧),Lin Y(林瑶),Ying Y L(应佚伦),et al.Detection of single oligonucleotide with an electrochemical confined solid-state nanopore[J].Scientia Sinica Chimica(中国科学:化学),2017,47(12):1445-1449.
    [7]Henrickson S E,Misakian M,Robertson B,et al.Driven DNA transport into an asymmetric nanometer-scale pore[J].Physical Review Letters,2000,85(14):3057-3060.
    [8]Fologea D,Uplinger J,Thomas B,et al.Slowing DNAtranslocation in a solid-state nanopore[J].Nano Letters,2005,5(9):1734-1737.
    [9]Zoysa R S S D,Krishantha D M M,Zhao Q T,et al.Translocation of single-stranded DNA through theα-hemolysin protein nanopore in acidic solutions[J].Electrophoresis,2011,32(21):3034-3041.
    [10]Mirsaidov U,Comer J,Dimitrov V,et al.Slowing the translocation of double-stranded DNA using a nanopore smaller than the double helix[J].Nanotechnology,2010,21(39):395501-395510.
    [11]Si W,Sha J J,Liu L,et al.Detecting DNA using a single graphene pore by molecular dynamics simulations[M].Key Engineering Materials,2012,503:423-426.
    [12]Si W,Sha J J,Liu L,et al.Effect of nanopore size on poly(dT)30translocation through silicon nitride membrane[J].Science China Technological Sciences,2013,56(10):2398-2402.
    [13]Kowalczyk S W,Wells D B,Aksimentiev A,et al.Slowing down DNA translocation through a nanopore in lithium chloride[J].Nano Letters,2012,12(2):1038-1044.
    [14]Uplinger J,Thomas B,Rollings R,et al.K+,Na+,and Mg2+on DNA translocation in silicon nitride nanopores[J].Electrophoresis,2012,33(23):3448-3457.
    [15]Zhang Y,Liu L,Sha J J,et al.Nanopore detection of DNA molecules in magnesium chloride solutions[J].Nanoscale Research Letters,2013,8(1):1-8.
    [16]Meller A,Nivon L,Branton D.Voltage-driven DNA translocations through a nanopore[J].Physical Review Letters,2001,86(15):3435-3438.
    [17]Yeh L H,Zhang M K,Joo S W,et al.Slowing down DNA translocation through a nanopore by lowering fluid temperature[J].Electrophoresis,2012,33(23):3458-3465.
    [18]Wanunu M,Sutin J,McNally B,et al.DNA translocation governed by interactions with solid-state nanopores[J].Biophysical Journal,2008,95(10):4716-4725.
    [19]Payet L,Martinho M,Merstorf C,et al.Temperature effect on ionic current and ss DNA transport through nanopores[J].Biophysical Journal,2015,109(8):1600-1607.
    [20]Matysiak S,Montesi A,Pasquali M,et al.Dynamics of polymer translocation through nanopores:theory meets experiment[J].Physical Review Letters,2006,96(11):118103.
    [21]Mahendran K R,Lamichhane U,Romero-Ruiz M,et al.Polypeptide translocation through the mitochondrial TOM channel:temperature-dependent rates at the single-molecule level[J].The Journal of Physical Chemistry Letters,2013,4(1):78-82.
    [22]Gu Z,Wang H F,Ying Y L,et al.Ultra-low noise measurements of nanopore-based single molecular detection[J].Science Bulletin,2017,62(18):1245-1250.
    [23]Wang Y Q,Li M Y,Qiu H,et al.Identification of essential sensitive regions of the aerolysin nanopore for single oligonucleotide analysis[J].Analytical Chemistry,2018,90(13):7790-7794.
    [24]Wang H F,Huang F,Gu Z,et al.Real-time event recognition and analysis system for nanopore study[J].Chinese Journal of Analytical Chemistry,2018,46(6):843-850.
    [25]Gu Z,Ying Y L,Long Y T.Nanopore sensing system for high-throughput single molecular analysis[J].Science China Chemistry,2018,59(1):1-2.
    [26]Li W W,Gong L Z,Bayley H.Single-molecule detection of 5-hydroxymethylcytosine in DNA through chemical modification and nanopore analysis[J].Angewandte Chemie International Edition,2013,52(16):4350-4355.
    [27]Yameen B,Ali M,Neumann R,et al.Single conical nanopores displaying p H-tunable rectifying characteristics.Manipulating ionic transport with zwitterionic polymer brushes[J].Journal of the American Chemical Society2009,131(6):2070-2071.
    [28]Cao C,Liao D F,Yu J,et al.Construction of an aerolysin nanopore in a lipid bilayer for single-oligonucleotide analysis[J].Nature Protocols,2017,12(9):1901-1911.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700