用户名: 密码: 验证码:
Ni/SiO_2溶胶稳定性及凝胶材料的物相化学结构
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Stability of Ni/SiO_2 sol and phase-chemical structure of its gel material
  • 作者:杨靖 ; 李泓君 ; 郭英明 ; 李波 ; 侯海云
  • 英文作者:YANG Jing;LI Hong-jun;GUO Ying-ming;LI Bo;HOU Hai-yun;School of Urban Planning and Municipal Engineering;School of Environmental & Chemistry Engineering, Xi′an Polytechnic University;
  • 关键词:溶胶-凝胶法 ; 镍掺杂 ; 黏滞性活化吉布斯自由能 ; 稳定性 ; 物相-化学结构
  • 英文关键词:sol-gel method;;nickel-doped;;viscous activation Gibbs free energy;;stability;;phase-chemical structure
  • 中文刊名:IMIY
  • 英文刊名:Chemical Engineering(China)
  • 机构:西安工程大学城市规划与市政工程学院;西安工程大学环境与化学工程学院;
  • 出版日期:2019-02-15
  • 出版单位:化学工程
  • 年:2019
  • 期:v.47;No.360
  • 基金:国家自然科学基金资助项目(21573171,21603169);; 陕西省重点研发计划(2017GY-121);; 陕西省教育厅自然科学专项基金(18JK0359)
  • 语种:中文;
  • 页:IMIY201902011
  • 页数:7
  • CN:02
  • ISSN:61-1136/TQ
  • 分类号:55-61
摘要
以甲基三乙氧基硅烷为疏水性前驱物,Ni(NO_3)_2·6H_2O为镍源,采用溶胶-凝胶法制备镍掺杂型SiO_2杂化(Ni/SiO_2)溶胶,研究镍掺杂对SiO_2溶胶黏度、密度、反应速率常数、黏滞性活化吉布斯自由能、稳定性、粒径分布和化学结构的影响以及350℃焙烧前后材料物相、化学结构的变化。结果表明:随着镍摩尔分数的增加,Ni/SiO_2溶胶的黏度、密度、平均粒径、反应速率常数和黏滞性活化吉布斯自由能逐渐增大,溶胶的Zeta电位则逐渐减小。黏滞性活化吉布斯自由能的增加使分子间的分散性降低,溶胶的稳定性减弱。Ni/SiO_2溶胶及凝胶材料中镍元素主要以Ni(NO_3)_2·6H_2O的形式存在,其化学结构主要以Si—O—Si,Si—CH_3和Si—OH键为主,在空气气氛中经350℃焙烧后,材料的物相、化学结构发生了变化, Ni~(2+)转变成了NiO和Ni—O—Si形式。
        Using methyl triethoxysilane as hydrophobic precursor and Ni(NO_3)_2·6 H_2O as the nickel source, nickel-doped SiO_2(Ni/SiO_2) hybrid sols were prepared by sol-gel method. The influences of nickel content on the viscosity, density, reaction rate constant, viscous Gibbs free energy, stability, particle size distribution and chemical structure of Ni/SiO_2 sol were studied. The phase-chemical structure of Ni/SiO_2 materials before and after calcining at 350 ℃ was also discussed. The results show that, with the nickel mole fraction increasing, the viscosity, density, average particle size, reaction rate constant and viscous activation Gibbs free energy of Ni/SiO_2 sol increase gradually while the zeta potential decreases. The increase of viscous activation Gibbs free energy reduces the intermolecular dispersity, which decreases the sol stability. Nickel element in Ni/SiO_2 sol and gel materials exists in the form of Ni(NO_3)_2·6 H_2O and the chemical structure mainly consists of Si—O—Si, Si—CH_3 and Si—OH bonds. After calcining at 350 ℃ in air atmosphere, the phase-chemical structure of Ni/SiO_2 material changes greatly, in which Ni~(2+) is converted into NiO and Ni—O—Si.
引文
[1] DUBEY R S, RAJESH Y B R D, MORE M A.Synthesis and characterization of SiO2 nanoparticles via sol-gel method for industrial applications[J]. Materials Today Proceedings, 2015, 2 (4/5): 3575-3579.
    [2] KARAKILIC P, HUISKES C, LUITEN-OLIEMAN M W J, et al. Sol-gel processed magnesium-doped silica membranes with improved H2/CO2 separation[J]. Journal of Membrane Science, 2017, 543: 195-201.
    [3] 张锐, 秦丹丹, 王海龙, 等. 溶胶凝胶法制备SiO2工艺[J].郑州大学学报:工学版 , 2006, 27(3): 119-122.
    [4] KHANMOHAMMADI S, TAHERI-NASSAJ E. Micro-porous silica-yttria membrane by sol-gel method: Preparation and characterization[J]. Ceramics International, 2014, 40(7): 9403-9411.
    [5] MESSAOUD S B, TAKAGAKI A, SUGAWARA T, et al. Alkylamine-silica hybrid membranes for carbon dioxide/methane separation[J]. Journal of Membrane Science, 2015, 477: 161-171.
    [6] ARAKI S, IMASAKA S, TANAKA S. Pervaporation of organic/water mixtures with hydrophobic silica membranes functionalized by phenyl groups[J].Journal of Membrane Science, 2011, 380(1): 41-47.
    [7] ABDOLLAHI A, ROGHANI-MAMAQANI H, SALAMI-KALAJAHI M, et al. Preparation of organic-inorganic hybrid nanocomposites from chemicallymodified epoxy and novolac resins and silica-attached carbon nanotubes by sol-gel process: Investigation of thermal degradation and stability[J]. Progress in Organic Coatings, 2018, 117: 154-165.
    [8] KANEZASHI M, FUCHIGAMI D, YOSHIOKA T, et al. Control of Pd dispersion in sol-gel-derived amorphous silica membranes for hydrogen separation at high temperatures[J].Journal of Membrane Science, 2013, 439 (14):78-86.
    [9] 林丹丹, 宋华庭, 朱瓌之, 等. 聚合溶胶粒径对铌掺杂的有机无机杂化SiO2膜气体分离性能的影响[J]. 膜科学与技术, 2016, 36 (1): 23-29.
    [10] WU C F, DUPONT V, NAHIL M A, et al. Investigation of Ni/SiO2 catalysts prepared at different conditions for hydrogen production from ethanol steam reforming[J]. Journal of the Energy Institute, 2016, 90(2): 276-284.
    [11] BALLINGER B, MOTUZAS J, SMART S, et al. Palladium cobalt binary doping of molecular sieving silica membranes[J]. Journal of Membrane Science, 2014, 451(1): 185-191.
    [12] XIA Z, LU H, LIU H, et al. Cyclohexane dehydrogenati-on over Ni-Cu/SiO2 catalyst: Effect of copper addition[J]. Catalysis Communications, 2017, 90: 39-42.
    [13] KAMATA H, TIAN Z Q, IZUMI Y, et al. Dispersed and high loading Ni catalyst stabilized in porous SiO2 matrix for substituted natural gas production[J]. Catalysis Today, 2018, 299: 193-200.
    [14] ALI A M, NAJMY R. Structural, optical and photocatal-ytic properties of NiO-SiO2 nanocomposites prepared by sol-gel technique[J]. Catalysis Today, 2013, 208 (6): 2-6.
    [15] 卢斌, 黄欢, 陈琴, 等. Ni纳米线/SiO2复合气凝胶的制备及机理分析[J]. 中南大学学报:自然科学版, 2011, 42(5): 1276-1281.
    [16] HUANG F, WANG R, YANG C, et al. Catalytic performances of Ni/mesoporous SiO2 catalysts for dry reforming of methane to hydrogen[J]. Journal of Energy Chemistry, 2016, 25(4): 709-719.
    [17] 李文秀, 李丹丹, 郑立娇, 等. 镍掺杂SiO2膜的制备及CH4/CO2气体分离性能[J]. 硅酸盐学报, 2014, 42(3): 416-422.
    [18] LI D, FANG W J, LIU L, et al.Volumetric and viscous properties for binary mixtures of N-methylpiperazine with ethyl acetate or butyl acetate from 298.15 K to 313.15 K[J]. Chemical Journal of Chinese Universities, 2013, 34(8): 1924-1928.
    [19] 任宏江. 黄嘌呤异构体质子转移异构化反应机理的理论研究[J]. 化学通报, 2015, 78(9): 815-819.
    [20] HASSEIN-BEY-LAROUCI A, IGOUJILEN O, AITKACI A, et al. Dynamic and kinematic viscosities, excess volumes and excess Gibbs energies of activation for viscous flow in the ternary mixture {1-propanol+N, N-dimethylformamide+chloroform at temperatures between 293.15 K and 323.15 K[J]. Thermochimica Acta, 2014, 589(10): 90-99.
    [21] 陈莎莉. 四参数Logistic模型能力参数的加权极大似然估计及其效能的模似研究[D]. 长春:东北师范大学, 2015:1-2
    [22] SADEGHZADEH-ATTAR A, AYUBIKIA G, EHTESH-AMZADEH M. Improvement in tribological behavior of novel sol-enhanced electroless Ni-P-SiO2 nanocomposite coatings[J]. Surface & Coatings Technology, 2016, 307: 837-848.
    [23] ZHAN Z, ZENG H C. A catalyst-free approach for sol–gel synthesis of highly mixed ZrO2-SiO2 oxides[J]. Journal of Non-Crystalline Solids, 1999, 243(1): 26-38.
    [24] 赵敬哲, 杨少凤, 王子忱, 等. 制备高比表面多孔Ti-Si复合氧化物材料的新方法[J]. 高等学校化学学报, 2000, 21(2): 292-294.
    [25] UENO A, SUZUKI H, KOTERA Y. Paticle-size distribu-tion of nickel dispersed on silica and its effects on hydr- ogenation of propionaldehyde[J]. Journal of the Chemical Society, Faraday Transactions 1, 1983, 79(1):127-136.
    [26] 邓晓燕, 张志焜. Ni(NO3)2·6H2O的热分解机理及非等温动力学参数[J]. 青岛科技大学学报:自然科学版, 2006, 27(1): 24-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700