用户名: 密码: 验证码:
低积累水稻品种联合腐殖酸、海泡石保障重镉污染稻田安全生产的潜力
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Potential to Ensure Safe Production from Rice Fields Polluted with Heavy Cadmium by Combining a Rice Variety with Low Cadmium Accumulation,Humic Acid,and Sepiolite
  • 作者:谢晓梅 ; 方至萍 ; 廖敏 ; 黄宇 ; 黄小辉
  • 英文作者:XIE Xiao-mei;FANG Zhi-ping;LIAO Min;HUANG Yu;HUANG Xiao-hui;College of Environmental and Resource Sciences,Zhejiang University;Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment;
  • 关键词:腐殖酸 ; 海泡石 ; 水稻 ; 重镉污染 ; 安全生产
  • 英文关键词:humic acid;;sepiolite;;rice;;heavy cadmium pollution;;safe production
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:浙江大学环境与资源学院;浙江省农业资源与环境重点研究实验室;
  • 出版日期:2018-03-26 13:16
  • 出版单位:环境科学
  • 年:2018
  • 期:v.39
  • 基金:国家自然科学基金项目(41571226,41371312)
  • 语种:中文;
  • 页:HJKZ201809057
  • 页数:11
  • CN:09
  • ISSN:11-1895/X
  • 分类号:386-396
摘要
以某铅锌矿开采区周边重镉污染稻田(全Cd含量为2.52 mg·kg~(-1))以及Cd低积累型晚粳稻品种嘉33为对象,研究了Cd低积累水稻嘉33与改良剂腐殖酸、海泡石联合对重镉污染稻田的农产品安全输出的保障潜力.结果表明,重镉污染稻田上嘉33仍表现出良好的低镉积累特性,改良剂腐殖酸、海泡石单独或联合投加,可降低水稻各器官中Cd的积累,以及茎对根吸收的Cd和精米对茎中Cd的转运系数,且降低量随着改良剂施用量的增加而增加.当施用5.250 t·hm~(-2)的腐殖酸、或6.750 t·hm~(-2)的海泡石、或1.125 t·hm~(-2)的腐殖酸和3.375 t·hm~(-2)的海泡石搭配施用均可使嘉33精米中Cd含量低于国家的限量指标(GB 2762~(-2)012),其精米中Cd含量分别为(0.171±0.01)、(0.184±0.01)和(0.181±0.01)mg·kg~(-1).腐殖酸单施、海泡石单施以及腐殖酸与海泡石配施均能促进土壤Cd向残渣态、铁锰氧化物结合态转化,显著降低土壤中有效Cd含量,降低Cd的生物有效性,进而降低了水稻各器官中Cd含量.其中海泡石单施、腐殖酸与海泡石配施降低土壤中有效Cd含量效果优于腐殖酸单施.同时,相比于腐殖酸单施、海泡石单施,腐殖酸和海泡石搭配施用对土壤养分的影响更趋友好,除了土壤碱解氮含量无明显性变化外,对应的土壤速效磷、速效钾及有机质含量均随改良剂施用量增加而升高.综上结果,意味着在重镉污染土壤上,低Cd积累水稻品种联合腐殖酸和海泡石配施是实现重镉污染土壤安全生产的优选措施.
        The study investigated the potential of ensuring safe production of rice from paddy fields affected by heavy cadmium contamination. A paddy soil polluted with heavy cadmium(total Cd content of 2. 52 mg·kg~(-1)) surrounding a lead-zinc mining area in Guiyang County of Chenzhou City,Hunan province was selected for analysis. We investigated production using a low cadmium accumulation rice variety(Oryza sativa L. Jia-33) and passivation additives for heavy metal activity(including humic acid and sepiolite). Results showed that: Oryza sativa L. Jia-33 showed good low cadmium accumulation characteristics in rice fields with heavy cadmium pollution. When humic acid and sepiolite were applied(alone or combined),the accumulation of Cd in different organs of the rice declined,and the transport coefficient of Cd for stem to root and polished rice to stem also declined. The rate of decline increased with increased application dosage. The cadmium content in polished rice was lower than the limit established in the National Food Safety Standard(GB 2715~(-2)012),when applying 5. 250 t·hm~(-2) humic acid,6. 750 t·hm~(-2) sepiolite,or a combination of 1. 125 t·hm~(-2) humic acid and 3. 37 5 t·hm~(-2) sepiolite; Cd content in polished rice was(0. 171 ± 0. 01),(0. 184 ± 0. 01),and(0. 181 ±0. 01) mg·kg~(-1),respectively. Single or combined application of humic acid and sepiolite promoted the transformation of soil Cd to residual and Fe Mn oxide bound forms,significantly reducing the content of available Cd and the bioavailability of Cd in soil,and further reducing Cd content in all rice organs. The reduction was more effective with single application of sepiolite or combined application of humic acid and sepiolite. The effects of combined application of humic acid and sepiolite were also more beneficial for soil nutrients,while soil available phosphorus,available potassium,phosphorus,and organic matter content increased with increased application of amendments. Soil nitrogen content did not change. In conclusion,results indicate that joint application of humic acid,sepiolite,and a low Cd accumulation rice variety are best for safe production on heavy cadmium-contaminated soil.
引文
[1]喻凤香,林亲录,陈煦.我国主稻作区稻谷镉和铅含量及其分布特征[J].生态与农村环境学报,2013,29(1):24-28.Yu F X,Lin Q L,Chen X.Contents and distributions of cadmium and lead in rice from main rice cultivation areas in China[J].Journal of Ecology and Rural Environment,2013,29(1):24-28.
    [2]Zhao F J,Ma Y B,Zhu Y G,et al.Soil contamination in China:current status and mitigation strategies[J].Environmental Science&Technology,2015,49(2):750-759.
    [3]陈齐,邓潇,陈珊,等.典型土壤不同提取态Cd与水稻吸收累积的关系[J].环境科学,2017,38(6):2538-2545.Chen Q,Deng X,Chen S,et al.Correlations between different extractable cadmium levels in typical soils and cadmium accumulation in rice[J].Environmental Science,2017,38(6):2538-2545.
    [4]张继舟,王宏韬,倪红伟,等.我国农田土壤重金属污染现状、成因与诊断方法分析[J].土壤与作物,2012,1(4):212-218.Zhang J Z,Wang H T,Ni H W,et al.Current situation,sources and diagnosis method analysis of heavy metal contamination in agricultural soils[J].Soil and Crop,2012,1(4):212-218.
    [5]王玉军,刘存,周东美,等.客观地看待我国耕地土壤环境质量的现状——关于《全国土壤污染状况调查公报》中有关问题的讨论和建议[J].农业环境科学学报,2014,33(8):1465-1473.Wang Y J,Liu C,Zhou D M,et al.A critical view on the status quo of the farmland soil environmental quality in China:Discussion and suggestion of relevant issues on report on the national general survey of soil contamination[J].Journal of Agro-Environment Science,2014,33(8):1465-1473.
    [6]杨祥田,周翠,何贤彪,等.田间试验条件下不同基因型水稻对Cd和Pb的吸收分配特征[J].农业环境科学学报,2013,32(3):438-444.Yang X T,Zhou C,He X B,et al.Uptake and partition of Cd and Pb among rice genotypes in contaminated paddy soil[J].Journal of Agro-Environment Science,2013,32(3):438-444.
    [7]杨文弢,周航,邓贵友,等.组配改良剂对污染稻田中铅、镉和砷生物有效性的影响[J].环境科学学报,2016,36(1):257-263.Yang W T,Zhou H,Deng G Y,et al.Effects of combined amendment on bioavailability of Pb,Cd,and As in polluted paddy soil[J].Acta Scientiae Circumstantiae,2016,36(1):257-263.
    [8]朱健,王平,林艳,等.不同产地硅藻土原位控制土壤镉污染差异效应与机制[J].环境科学,2016,37(2):717-725.Zhu J,Wang P,Lin Y,et al.Differential effect and mechanism of in situ immobilization of cadmium contamination in soil using diatomite produced from different areas[J].Environmental Science,2016,37(2):717-725.
    [9]吴烈善,曾东梅,莫小荣,等.不同钝化剂对重金属污染土壤稳定化效应的研究[J].环境科学,2015,36(1):309-313.Wu L S,Zeng D M,Mo X R,et al.Immobilization impact of different fixatives on heavy metals contaminated soil[J].Environmental Science,2015,36(1):309-313.
    [10]陈立伟,杨文弢,辜娇峰,等.复合改良剂对Cd污染稻田早晚稻产地修复效果[J].环境科学,2017,38(6):2546-2552.Chen L W,Yang W T,Gu J F,et al.Remedying effects of a combined amendment for paddy soil polluted with Cd for spring and autumn rice[J].Environmental Science,2017,38(6):2546-2552.
    [11]Zhu H H,Chen C,Zhu Q H,et al.Effects of soil acidification and liming on the phytoavailability of cadmium in paddy soils of central subtropical China[J].Environmental Pollution,2016,219:99-106.
    [12]李丽君,张强,白光洁,等.改良剂与油菜对土壤重金属有效态的影响[J].水土保持学报,2014,28(1):246-252.Li L J,Zhang Q,Bai G J,et al.The influence of amendments and rape on available heavy metals content in soil[J].Journal of Soil and Water Conservation,2014,28(1):246-252.
    [13]梁学峰,韩君,徐应明,等.海泡石及其复配原位修复镉污染稻田[J].环境工程学报,2015,9(9):4571-4577.Liang X F,Han J,Xu Y M,et al.In-situ remediation of cd polluted paddy soil using sepiolite and combined amendments[J].Chinese Journal of Environmental Engineering,2015,9(9):4571-4577.
    [14]张楠.低积累型水稻品种的筛选及其配套阻控技术初探[D].杭州:浙江大学,2015.Zhang N.A preliminary study on screening for low accumulationtype rice cultivars and forming a set of controlling technology[D].Hangzhou:Zhejiang University,2015.
    [15]鲍士旦.土壤农化分析[M].(第三版).北京:中国农业出版社,2000.Bao S D.Soil and agricultural chemistry analysis(3rd ed.)[M].Beijing:China Agriculture Press,2000.
    [16]Du Y,Hu X F,Wu X H,et al.Affects of mining activities on Cd pollution to the paddy soils and rice grain in Hunan province,Central South China[J].Environmental Monitoring and Assessment,2013,185(12):9843-9856.
    [17]Tessier A,Campbell P G C,Bisson M.Sequential extraction procedure for the speciation of particulate trace metals[J].Analytical Chemistry,1979,51(7):844-851.
    [18]黄益宗,郝晓伟.赤泥、骨炭和石灰对玉米吸收积累As、Pb和Zn的影响[J].农业环境科学学报,2013,32(3):456-462.Huang Y Z,Hao X W.Effect of red mud,bone char and lime on uptake and accumulation of As,Pb and Zn by Maize(Zea mays)planted in contaminated soil[J].Journal of Agro-Environment Science,2013,32(3):456-462.
    [19]方至萍,廖敏,张楠,等.施用海泡石对铅、镉在土壤-水稻系统中迁移与再分配的影响[J].环境科学,2017,38(7):3028-3035.Fang Z P,Liao M,Zhang N,et al.Effect of sepiolite application on the migration and redistribution of Pb and Cd in soil rice system in soil with Pb and Cd combined contamination[J].Environmental Science,2017,38(7):3028-3035.
    [20]黄宇,廖敏,叶照金,等.两种低镉积累水稻镉含量与土壤镉的剂量-效应关系及调控[J].生态与农村环境学报,2017,33(8):748-754.Huang Y,Liao M,Ye Z J,et al.Cd concentrations in two low Cd accumulating varieties of rice and their relationships with soil Cd content and their regulation under field conditions[J].Journal of Ecology and Rural Environment,2017,33(8):748-754.
    [21]孙约兵,王朋超,徐应明,等.海泡石对镉-铅复合污染钝化修复效应及其土壤环境质量影响研究[J].环境科学,2014,35(12):4720-4726.Sun Y B,Wang P C,Xu Y M,et al.Immobilization remediation of Cd and Pb contaminated soil:remediation potential and soil environmental quality[J].Environmental Science,2014,35(12):4720-4726.
    [22]段桂兰,王芳,岑况,等.秸秆还田对水稻镉积累及其亚细胞分布的影响[J].环境科学,2017,38(9):3927-3936.Duan G L,Wang F,Cen K,et al.Effects of straw incorporation on cadmium accumulation and subcellular distribution in rice[J].Environmental Science,2017,38(9):3927-3936.
    [23]杨毅,兰亚琼,金鹏康,等.腐殖酸与Cd2+的结合特性及其影响因素[J].环境化学,2017,36(6):1198-1203.Yang Y,Lan Y Q,Jin P K,et al.Characteristic and influential factors of humic acid complexed with Cd2+[J].Environmental Chemistry,2017,36(6):1198-1203.
    [24]Duan G L,Zhang H M,Shen Y Q,et al.Mitigation of heavy metal accumulation in rice grain with silicon in animal manure fertilized field[J].Environmental Engineering and Management Journal,2016,15(10):2223-2229.
    [25]张路.水稻镉安全亲本材料对镉的吸收、转运及积累特征[D].雅安:四川农业大学,2015.Zhang L.Characteristic of cadmium uptake,translocation and accumulation in cadmium-safe rice line[D].Ya'an:Sichuan Agricultural University,2015.
    [26]赵庆圆,李小明,杨麒,等.磷酸盐、腐殖酸与粉煤灰联合钝化处理模拟铅镉污染土壤[J].环境科学,2018,39(1):389-398.Zhao Q Y,Li X M,Yang Q,et al.Passivation of simulated Pband Cd-contaminated soil by applying combined treatment of phosphate,humic acid,and fly ash[J].Environmental Science,2018,39(1):389-398.
    [27]韩君,梁学峰,徐应明,等.黏土矿物原位修复镉污染稻田及其对土壤氮磷和酶活性的影响[J].环境科学学报,2014,34(11):2853-2860.Han J,Liang X F,Xu Y M,et al.In-situ remediation of Cdpolluted paddy soil by clay minerals and their effects on nitrogen,phosphorus and enzymatic activities[J].Acta Scientiae Circumstantiae,2014,34(11):2853-2860.
    [28]Zhou H,Zhou X,Zeng M,et al.Effects of combined amendments on heavy metal accumulation in rice(Oryza sativa L.)planted on contaminated paddy soil[J].Ecotoxicology and Environmental Safety,2014,101:226-232.
    [29]王永昕,孙约兵,徐应明,等.施用鸡粪对海泡石钝化修复镉污染菜地土壤的强化效应及土壤酶活性影响[J].环境化学,2016,35(1):159-169.Wang Y X,Sun Y B,Xu Y M,et al.Enhancement of chicken manure on the immobilization remediation of cadmium contaminated vegetable soil and enzyme activity using sepiolite[J].Environmental Chemistry,2016,35(1):159-169.
    [30]姜洋,罗远恒,顾雪元.农田土壤镉污染的原位钝化修复及持久性研究[J].南京大学学报(自然科学),2017,53(2):265-274.Jiang Y,Luo,Y H,Gu X Y.In situ immoblization of cadmium in soil and persistence study[J].Journal of Nanjing University(Natural Sciences),2017,53(2):265-274.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700