用户名: 密码: 验证码:
纳米电催化剂的原位透射电镜表征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:In-situ transmission electron microscopy characterization of nanoelectrocatalysts
  • 作者:张星 ; 曹安民 ; 万立骏
  • 英文作者:ZHANG Xing;CAO An-min;WAN Li-jun;CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science (CAS);University of Chinese Academy of Sciences;
  • 关键词:电催化剂 ; 原位透射电镜 ; 原子结构 ; 催化活性
  • 英文关键词:electrocatalyst;;in-situ transmission electron microscopy;;atomic structure;;catalyst activity
  • 中文刊名:DZXV
  • 英文刊名:Journal of Chinese Electron Microscopy Society
  • 机构:中国科学院化学研究所分子纳米结构与纳米技术院重点实验室;中国科学院大学;
  • 出版日期:2018-10-15
  • 出版单位:电子显微学报
  • 年:2018
  • 期:v.37;No.199
  • 基金:国家自然科学基金青年科学基金项目(No.21703257)
  • 语种:中文;
  • 页:DZXV201805014
  • 页数:10
  • CN:05
  • ISSN:11-2295/TN
  • 分类号:112-121
摘要
构建催化剂表面原子结构与催化性能之间的构效关系是目前电催化剂研究的挑战性难题,而原位透射电镜是研究材料性质-结构关系及其变化过程的有力手段,为高性能催化剂的设计及纳米科技的发展创造了新的契机。本文结合原位透射电镜技术的发展,对目前利用透射电镜原位观察电催化剂的工作进行了归纳总结,以此对具有高催化活性纳米材料的设计与构筑提供参考。
        It is a challenging project to identify the detailed structure-activity relationship between atomic structure and catalytic performance of electrocatalysts. In-situ transmission electron microscopy(IS-TEM)can not only provide invaluable insight into the evolution rule of material surface structure under chemical reaction environments, offer direct evidence to construct the property-structure relationship of catalyst, but also provide new opportunities for the development of nanoscience and nanotechnology. In view of "setting up a nanolab inside a TEM", we review the recent progress in the application of in-situ TEM for electrocatalyst, which will help to design and construct nanomaterials with high catalytic activity.
引文
[1] 朱静,叶恒强,王仁卉. 高空间分辨分析电子显微学[M]. 北京:科学出版社, 1987.
    [2] 朱静. 纳米材料和器件[M]. 北京:清华大学出版社, 2003.
    [3] 郭可信,叶恒强. 高分辨电子显微学在固体科学中的应用[M]. 北京:科学出版社, 1985.
    [4] WANG Z,TAVABI A H,JIN L,et al. Atomic scale imaging of magnetic circular dichroism by achromatic electron microscopy[J]. Nature Materials,2018,17(3): 221.
    [5] SUN L,BANHART F,KRASHENINNIKOV A V,et al. Carbon nanotubes as high-pressure cylinders and nanoextruders[J]. Science, 2006, 312(5777): 1199.
    [6] 宋建祥,朱海音,刘显强. GeSb2Te4纳米薄膜的原位透射电子显微学研究[J]. 电子显微学报,2017,36(3): 202.
    [7] De JONGE N,ROSS F M. Electron microscopy of specimens in liquid[J].Nature Nanotechnology, 2011,6: 695.
    [8] MIN Y,AKBULUT M,KRISTIANSEN K,et al. The role of interparticle and external forces in nanoparticle assembly[J]. Nature Materials, 2008, 7: 527.
    [9] WU J,SHAN H,CHEN W,et al. In situ environmental TEM in imaging gas and liquid phase chemical reactions for materials research[J]. Advanced Materials, 2016,28(44): 9686.
    [10] WAGNER J B,CAVALCA F,DAMSGAARD C D,et al. Exploring the environmental transmission electron microscope[J]. Micron, 2012, 43(11): 1169.
    [11] TAKEDA S,YOSHIDA H. Atomic-resolution environmental TEM for quantitative in-situ microscopy in materials science[J]. Microscopy, 2013, 62(1): 193.
    [12] 高攀,王疆靖,王晓东,等. 弯曲应变下单根GaAs纳米线的电学性能的原位透射电子显微镜研究[J]. 电子显微学报, 2015, 34(2): 89-93.
    [13] YUAN Y,AMINE K,LU J,et al. Understanding materials challenges for rechargeable ion batteries with in situ transmission eelectron microscopy[J]. Nature Communications, 2017, 8: 15806.
    [14] GONG Y,ZHANG J,JIANG L,et al. In situ atomic-scale observation of electrochemical delithiation induced structure evolution of LiCoO2 cathode in a working all-solid-state battery[J]. Journal of the American Chemical Society, 2017, 139(12): 4274.
    [15] HODNIK N,DEHM G,MAYRHOFER K J J. Importance and challenges of electrochemical in situ liquid cell electron microscopy for energy conversion research[J]. Accounts of Chemical Research, 2016,49 (9): 2015.
    [16] WILLIAMSON M J,TROMP R M,VEREECKEN P M,et al. Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface[J]. Nature Materials, 2003, 2: 532.
    [17] RADISIC A,ROSS F M,SEARSON P C. In situ study of the growth kinetics of individual island electrodeposition of copper[J]. The Journal of Physical Chemistry B,2006,110(15): 7862.
    [18] HEIDE H G. Electron microscopic observation of specimens under controlled gas pressure[J]. The Journal of Cell Biology, 1962, 13(1): 147.
    [19] JONGE N D,PECKYS D B,KREMERS G J,et al. Electron microscopy of whole cells in liquid with nanometer resolution[J]. Proceedings of the National Academy of Sciences, 2009,106(7): 2159.
    [20] HUANG J Y,ZHONG L,WANG C M,et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode[J]. Science,2010,330 (6010): 1515.
    [21] ZHENG H,SMITH R K,JUN YW,et al. Observation of single colloidal platinum nanocrystal growth trajectories[J]. Science, 2009, 324(5932): 1309.
    [22] EVANS J E,JUNGJOHANN K L,BROWNING N D,et al. Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy[J]. Nano Letters, 2011,11(7): 2809.
    [23] WU J,GAO W,YANG H,et al. Dissolution kinetics of oxidative etching of cubic and icosahedral platinum nanoparticles revealed by in situ liquid transmission electron microscopy[J]. ACS Nano, 2017, 11(2): 1696.
    [24] SHAN H,GAO W,XIONG Y,et al. Nanoscale kinetics of asymmetrical corrosion in core-shell nanoparticles[J]. Nature Communications, 2018,9: 1011.
    [25] ZHANG Z,SHENG H,WANG Z,et al. Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy[J]. Nature Communications, 2017, 8: 14390.
    [26] ZHONG L,SANSOZ F,HE Y,et al. Slip-activated surface creep with room-temperaturesuper-elongation in metallicnanocrystals[J]. Nature Materials, 2016,16: 439.
    [27] LIAO HG,CUI L,WHITELAM S,et al. Real-time imaging of Pt3Fe nanorod growth in solution[J]. Science, 2012, 336(6084): 1011.
    [28] 姜超,陈陆,刘军,等. VO2(A)纳米线相变过程的透射电镜原位观察[J]. 电子显微学报,2017,36(4): 301-305.
    [29] 舒新愉,卢艳,王立华,等. 单晶体心立方金属铌裂纹尖端位错增殖行为的原位研究[J]. 电子显微学报,2017,36(4): 313-320.
    [30] PECKYS D B,De JONGE N. Visualizing gold nanoparticle uptake in live cells with liquid scanning transmission electron microscopy[J]. Nano Letters,2011,11(4): 1733.
    [31] PECKYS D B,KORF U,De JONGE N. Local variations of HER2 dimerization in breast cancer cells discovered by correlative fluorescence and liquid electron microscopy[J]. Science Advances,2015,1(6): e1500165.
    [32] HATSUJIRO H,TOSHIO N,TERUKAZU E,et al. High temperature gas reaction specimen chamber for an electron microscope[J]. Japanese Journal of Applied Physics, 1968,7(8): 946.
    [33] ZHAO G,ZHANG X,SHEN Z,et al. Oxidation of ZrB2nanoparticles at high temperature under low oxygen pressure[J]. Journal of the American Ceramic Society, 2014, 97(8): 2360.
    [34] JIANG Y,WANG Y,ZHANG Y Y,et al. Direct observation of Pt nanocrystal coalescence induced by electron-excitation-enhanced Van Der Waals interactions[J]. Nano Research, 2014,7(3): 308.
    [35] MAYRHOFER K J J,ASHTON S J,MEIER J C,et al. Non-destructive transmission electron microscopy study of catalyst degradation under electrochemical treatment[J]. Journal of Power Sources, 2008,185(2): 734.
    [36] ZHANG L,SHI W,ZHANG B. A review of electrocatalyst characterization by transmission electron microscopy[J]. Journal of Energy Chemistry, 2017,26(6): 1117.
    [37] MEIER J C,KATSOUNAROS I,GALEANO C,et al. Stability investigations of electrocatalysts on the nanoscale[J]. Energy & Environmental Science,2012,5(11): 9319.
    [38] MAYRHOFER K J J,MEIER J C,ASHTON S J,et al. Fuel cell catalyst degradation on the nanoscale[J]. Electrochemistry Communications, 2008, 10(8): 1144.
    [39] MEIER J C,GALEANO C,KATSOUNAROS I,et al. Degradation mechanisms of Pt/C fuel cell catalysts under simulated start-stop conditions[J]. ACS Catalysis, 2012, 2(5): 832.
    [40] SCHLGL K,HANZLIK M,ARENZ M. Comparative IL-TEM study concerning the degradation of carbon supported Pt-based electrocatalysts[J]. Journal of the Electrochemical Society, 2012, 159(6): B677.
    [41] HOLTZ M E,YU Y,GUNCELER D,et al. Nanoscale imaging of lithium ion distribution during in situ operation of battery electrode and electrolyte[J]. Nano Letters, 2014, 14(3): 1453.
    [42] ZHU GZ,PRABHUDEV S,YANG J,et al. In situ liquid cell TEM study of morphological evolution and degradation of Pt-Fe nanocatalysts during potential cycling[J]. The Journal of Physical Chemistry C, 2014,118(38): 22111.
    [43] KATO H. In-situ liquid TEM study on the degradation mechanism of fuel cell catalysts[J]. SAE International Journal of Alternative Powertrains, 2016, 5(1): 189. * Corresponding author

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700