用户名: 密码: 验证码:
基于声学超材料的低频可调吸收器
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A kind of tunable acoustic metamaterial for low frequency absorption
  • 作者:翟世龙 ; 王元博 ; 赵晓鹏
  • 英文作者:Zhai Shi-Long;Wang Yuan-Bo;Zhao Xiao-Peng;Smart Materials Laboratory, School of Science, Northwestern Polytechnical University;
  • 关键词:可调 ; 声学超材料 ; 低频 ; 吸收器
  • 英文关键词:tunable;;acoustic metamaterial;;low frequency;;absorber
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:西北工业大学理学院应用物理系智能材料实验室;
  • 出版日期:2019-01-29 10:58
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:国家自然科学基金(批准号:11804278,11174234,51272215);; 中央高校基本科研业务费(批准号:G2017KY0105)资助的课题~~
  • 语种:中文;
  • 页:WLXB201903019
  • 页数:7
  • CN:03
  • ISSN:11-1958/O4
  • 分类号:180-186
摘要
在当今社会,噪声污染已经成为人类健康的一大威胁,如何有效地控制和消除噪声污染一直是科研领域的一个重要话题.本文以开口环嵌套结构为模型,设计并制备了一种声学超材料.通过理论分析、数值模拟和实验测试,发现由于模型内部空腔的强烈耦合共振效应,该超材料可以在低频区域实现接近完美的吸声效应.此外,通过简单地绕轴旋转其内腔开口方向,即可改变该超材料的相对阻抗值,进而在较宽的频带范围内实现对吸收峰位置的可调控制.由于该超材料具有深亚波长的尺寸,因此非常有利于低频吸声器件的小型化和集成化,同时该模型也为宽带吸收器的设计奠定了基础.
        Low frequency noise is always an important factor affecting people's quality of life. At present, the most widely used sound absorbing materials include polyurethane foam, trimeric amine, mineral cotton, textiles,cotton and special sound insulation materials. However, the sizes of these materials are generally large, and the sound absorption efficiencies are often low, especially in a low frequency range(below 2000 Hz). Acoustic metamaterial is a kind of artificial composite material, which is constructed by microunits whose dimensions are much smaller than the working wavelength. The results show that if the strong coupling condition between the resonant scatter and the waveguide is satisfied, the sound energy flowing through the metamaterial will be completely offset by the internal loss of the resonant scatter. Therefore, it is believed that this kind of acoustic metamaterial can solve the absorption problem of low-frequency sound waves. In order to solve this problem,researchers have conducted a lot of exploratory researches. However, most of the structural units that are constructed with acoustic metamaterials are passive, that is, once the material is processed and shaped, its properties are fixed and cannot be changed. This defect greatly limits the development of acoustical metamaterials, so it is urgent to study acoustical metamaterials whose material properties and the working frequency bands are flexibly adjustable. Although tunable acoustic metamaterials have been studied, few people have extended this research to the field of low-frequency tunable sound absorption. In our previous work, we systematically studied the acoustic properties of two kinds of acoustic artificial "meta-atoms", namely, open hollow sphere model with negative equivalent elastic modulus and hollow tube model with negative equivalent mass density. The research shows that these two kinds of "meta-atoms" both have obvious sound absorption effect. According to our previous studies, in this paper we couple these two kinds of "meta-atoms" into a whole,and design a new nested model of open loop. The model has the advantages of simple structure and easy preparation. Through theoretical analysis, numerical simulation and experimental testing, it is found that the strong coupling resonance effects between these "meta-atoms" can be excited by the low frequency incident acoustic wave in the nested structure, thus achieving nearly perfect sound energy absorption. In addition, the relative impedance of the metamaterial can be changed by simply rotating the inner splitting ring around the axis, therefore the position of the absorption peak can be freely controlled in a wide frequency band. Because of its deep sub-wavelength size, the metamaterial is very useful for miniaturizing and integrating the low-frequency acoustic absorption devices. What is more, this model also lays a foundation for designing the broadband absorbers.
引文
[1]Rahimabady M,Statharas E C,Yao K,Mirshekarloo M S,Chen S,Tay F E H 2017 Appl.Phys.Lett.111 241601
    [2]Gwon J G,Kim S K,Kim J H 2016 Mater.Des.89 448
    [3]Xue B,Li R,Deng J,Zhang J 2016 Ind.Eng.Chem.Res.553982
    [4]Padhye R,Nayak R 2016 Acoustic Textiles(Singapore:Springer)
    [5]Ding C L,Dong Y B,Zhao X P 2018 Acta Phys.Sin.67194301(in Chinese)[丁昌林,董怡宝,赵晓鹏2018物理学报67 194301]
    [6]Liu Z Y,Zhang X X,Mao Y W,Zhu Y Y,Yang Z Y,Chan CT,Sheng P 2000 Science 289 1734
    [7]Fang N,Xi D J,Xu J Y,Ambati M,Srituravanich W,Sun C,Zhang X 2006 Nat.Mater.5 452
    [8]Lee S H,Park C M,Seo Y M,Wang Z G,Kim C K 2010Phys.Rev.Lett.104 054301
    [9]Li Y,Liang B,Zou X Y,Cheng J C 2013 Appl.Phys.Lett.103 063509
    [10]Zhai S L,Zhao X P,Liu S,Shen F L,Li L L,Luo C R 2016Sci.Rep.6 32388
    [11]Zhai S L,Chen H J,Ding C L,Li L L,Shen F L,Luo C R,Zhao X P 2016 J.Phys.D:Appl.Phys.49 225302
    [12]Ma G C,Fan X Y,Ma F Y,de Rosny J,Sheng P,Fink M2018 Nat.Phys.14 608
    [13]Xu Y,Li Y,Lee R K,Yariv A 2000 Phys.Rev.E 62 7389
    [14]Yang Z,Mei J,Yang M,Chan N H,Sheng P 2008 Phys.Rev.Lett.101 204301
    [15]Mei J,Ma G,Yang M,Yang Z,Wen W,Sheng P 2012 Nat.Commun.3 756
    [16]Cai X,Guo Q,Hu G,Yang J 2014 Appl.Phys.Lett.105121901
    [17]Starkey T A,Smith J D,Hibbins A P,Sambles J R,Rance HJ 2017 Appl.Phys.Lett.110 041902
    [18]Li Y,Assouar B M 2016 Appl.Phys.Lett.108 063502
    [19]Richoux O,Achilleos V,Theocharis G,Brouzos I 2018 Sci.Rep.8 12328
    [20]Badreddine Assouar M,Senesi M,Oudich M,Ruzzene M,Hou Z 2012 Appl.Phys.Lett.101 173505
    [21]Climente A,Torrent D,Anchez-Dehesa J S 2012 Appl.Phys.Lett.100 144103
    [22]Romero-García V,Theocharis G,Richoux O,Merkel A,Tournat V,Pagneux V 2016 Sci.Rep.6 19519
    [23]Li J,Wang W,Xie Y,Popa B I,Cummer S A 2016 Appl.Phys.Lett.109 091908
    [24]Li Y,Shen C,Xie Y,Li J,Wang W,Cummer S,Jing Y 2017Phys.Rev.Lett.119 035501
    [25]Wang X,Luo X,Zhao H,Huang Z 2018 Appl.Phys.Lett.112021901
    [26]Peng X,Ji J,Jing Y 2018 J.Acoust.Soc.Am.144 EL255
    [27]Xia J P,Zhang X T,Sun H X,Yuan S Q,Qian J,Ge Y 2018Phys.Rev.Appl.10 014016
    [28]Chen Z,Xue C,Fan L,Zhang S Y,Li X J,Zhang H,Ding J2016 Sci.Rep.6 30254
    [29]Ma G,Fan X,Sheng P,Fink M 2018 Proc.Natl.Acad.Sci.USA 115 6638
    [30]Wang Y,Zhao H,Yang H,Zhong J,Zhao D,Lu Z,Wen J2018 J.Appl.Phys.123 185109
    [31]Ding C L,Hao L M,Zhao X P 2010 J.Appl.Phys.108074911
    [32]Chen H J,Zeng H C,Ding C L,Luo C R,Zhao X P 2013 J.Appl.Phys.113 104902
    [33]Yang M,Sheng P 2017 Annu.Rev.Mater.Res.47 83

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700