用户名: 密码: 验证码:
基于薄板弯曲变形理论的煤矿立井次生地压与竖向附加力理论解
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analytical solutions for secondary ground pressure and vertical additional force of mine vertical shaft based on thin plate bending theory
  • 作者:薛维培 ; 程桦 ; 姚直书 ; 荣传新 ; 经来旺 ; 涂敏
  • 英文作者:XUE Weipei;CHENG Hua;YAO Zhishu;RONG Chuanxin;JING Laiwang;TU Min;School of Civil Engineering and Architecture,Anhui University of Science and Technology;Research Center of Mine Underground Engineering of Ministry of Education,Anhui University of Science and Technology;Post-doctoral Research Station of Safety Science and Engineering,Anhui University of Science and Technology;School of Mining and Safety Engineering,Anhui University of Science and Technology;
  • 关键词:次生地压 ; 竖向附加力 ; 表土沉降 ; 煤矿立井 ; 微元法 ; 薄板单元
  • 英文关键词:secondary ground pressure;;vertical additional force;;soil subsidence;;coalmine vertical shaft;;infinitesimal method;;thin plate unit
  • 中文刊名:KSYL
  • 英文刊名:Journal of Mining & Safety Engineering
  • 机构:安徽理工大学土木建筑学院;安徽理工大学矿山地下工程教育部工程研究中心;安徽理工大学安全科学与工程博士后科研流动站;安徽理工大学能源与安全学院;
  • 出版日期:2019-01-15
  • 出版单位:采矿与安全工程学报
  • 年:2019
  • 期:v.36;No.142
  • 基金:国家重点研发计划项目(2016YFC0600902);; 国家自然科学基金项目(51674006);; 安徽省高校学科(专业)拔尖人才学术项目(gxbjZD09);; 安徽省高等学校自然科学研究重点项目(KJ2018A0098);; 中国博士后科学基金项目(2018M642502);; 安徽理工大学青年教师科学研究基金重点项目(QN2017211)
  • 语种:中文;
  • 页:KSYL201901018
  • 页数:9
  • CN:01
  • ISSN:32-1760/TD
  • 分类号:135-143
摘要
基于表土沉降引发的煤矿立井次生地压与竖向附加力对深厚表土层中井壁结构设计的重要性,采用微元法将井筒周围表土划分成若干以井筒中心线为对称轴的薄板单元,利用轴对称薄板弯曲变形理论和土的基本力学性质建立微分方程,以临涣主井为研究对象并借助井壁应力实测数据,对立井次生地压与竖向附加力的分布规律进行研究,得到相应的理论解。结果表明:理论与实践相结合获得的次生地压和竖向附加力分布规律与实际情况吻合度高,能够满足临涣主井与井田区域内的其他6个破裂井筒强度验算要求。次生地压与竖向附加力理论解的科学性得到很好的检验。
        The secondary ground pressure and vertical additional force of mine vertical shaft caused by surface sedimentation is of significance to the shaft wall structure design in deep alluvium. In this study, the soil around shaft was divided into many thin plate units by using infinitesimal method, and the symmetry axis of thin plate units was the shaft axis. The differential equations were established based on axisymmetric thin plate bending deformation theory and the basic mechanical properties of soil. Then the distribution of secondary ground pressure and vertical additional force was solved with the aid of measured shaft lining stress of Linhuan main shaft, and corresponding theoretical solutions were obtained. Results indicate that the outcomes obtained from combined method of theory analysis and experiments matched the actual situation very well. In addition, the above theory was also examined by the other six broken shaft in the same mine area with Linhuan mine. The scientificity of theoretical solutions of secondary ground stress and vertical additional force were well verified.
引文
[1]程桦,苏俊,姚直书.疏水沉降地层竖向可缩性井壁附加力分布规律研究[J].岩土力学,2007,28(3):471-475.CHENG Hua,SU Jun,YAO Zhishu.Study on distributing rule of additional force of compressible shaft wall in hydrophobic settlement stratum[J].Rock and Soil Mechanics,2007,28(3):471-475.
    [2]荣传新,王秀喜,程桦.深厚冲积层冻结壁和井壁共同作用机理研究[J].工程力学,2009,26(3):235-239.RONG Chuanxin,WANG Xiuxi,CHENG Hua.A study on interaction mechanism of frozen soil wall and shaft lining in deep alluvium[J].Engineering Mechanics,2009,26(3):235-239.
    [3]WANG Yansen,ZHANG Chi,XUE Libing,et al.Prediction and safety analysis of additional vertical stress within a shaft wall in an extra-thick alluvium[J].Mining Science and technology,2010,20(3):350-356.
    [4]LIANG Hengchang,ZHOU Guoqing,LIAO Bo,et al.In-site monitoring and analysis of shaft lining’s additional strain in failure and formation grouting[J].Procedia Earth and Planetary Science,2009,1(1):503-511.
    [5]ZHAO Qianli,GAO Qian,ZHANG Zhangping,et al.Deformation analysis and stability evaluation of the main shaft at Jinchuan Mine No.3[J].Journal of China University of Mining&Technology,2007,17(2):290-294.
    [6]张文泉,卢玉华,宫红月,等.兖滕矿区立井井壁损坏的原因分析及防治方法[J].岩土力学,2004,25(12):1977-1980.ZHANG Wenquan,LU Yuhua,GONG Hongyue,et al.Causes analysis of shaft wall damage in Yan-Teng mining district and its prevention and controlling method[J].Rock and Soil Mechanics,2004,25(12):1977-1980.
    [7]刘金龙,陈陆望,王吉利.立井井壁竖向附加力的反演统计分析[J].中国矿业,2014,23(5):142-145.LIU Jinlong,CHEN Luwang,WANG Jili.Inversion statistical analysis of vertical additive pressure at shaft wall[J].China Mining Magazine,2014,23(5):142-145.
    [8]梁恒昌,周国庆,赵光思.井壁破裂过程的应变实测特征分析[J].煤炭学报,2010,35(2):198-202.LIANG Hengchang,ZHOU Guoqing,ZHAO Guangsi.Strain characters of shaft lining crack[J].Journal of China Coal Society,2010,35(2):198-202.
    [9]经来旺,高全臣,刘飞,等.深立井井壁破裂的力学机理及破裂预测研究[J].工程力学,2006,23(3):156-161.JING Laiwang,GAO Quanchen,LIU Fei,et al.Rupture mechanism and rupture forecast of the shaft wall in mine[J].Engineering Mechanics,2006,23(3):156-161.
    [10]LI Xiaoqin,LI Wenping.Test study on the ruptures of coal shaft lining buried by thick over soils in East China[J].Disaster advances,2010,3(4):495-498.
    [11]曹辉.低温高性能混凝土性能与应用研究[D].北京:中国矿业大学(北京),2009.
    [12]蒋林华,徐辉东,储洪强,等.冻结法施工井壁中高强高性能混凝土研制应用[J].煤炭科学技术,2010,38(10):38-41.JIANG Linhua,XU Huidong,CHU Hongqiang,et al.Development and application of high strength and high performance concrete to mine freezing shaft[J].Coal Science and Technology,2010,38(10):38-41.
    [13]韩涛,杨维好,任彦龙,等.钢骨混凝土井壁水平极限承载特性的试验研究[J].采矿与安全工程学报,2011,28(2):181-186.HAN Tao,YANG Weihao,REN Yanlong,et al.Horizontal ultimate bearing capacity of encased steel concrete shaft lining[J].Journal of Mining&Safety Engineering,2011,28(2):181-186.
    [14]YAO Zhishu,CHENG Hua,RONG Chuanxin.Research on stress and strength of high strength reinforced concrete drilling shaft lining in thick top soils[J].Journal of China University of Mining&Technology,2007,17(3):432-435.
    [15]张明君.厚表土层立井地压的研究[J].中国矿业学院学报,1983(2):81-89.ZHANG Mingjun.Earth pressure on shaft sunk in thick over burden[J].Journal of China Mining University,1983(2):81-89.
    [16]马英明.深表土竖井地压的计算方法[J].煤炭科学技术,1979(1):16-22.MA Yingming.Pressure calculation method of shaft in deep soil[J].Coal Science and Technology,1979(1):16-22.
    [17]徐辉东,经来旺,杨仁树.矿山立井井筒与表土之间的剪切力分析[J].岩石力学与工程学报,2006,25(2):385-391.XU Huidong,JING Laiwang,YANG Renshu.Analysis of shear force between surface soil and vertical shaft in mine[J].Chinese Journal of Rock Mechanics and Engineering,2006,25(2):385-391.
    [18]马文强,王同旭,曲孔典.基于薄板模型的高韧性煤层难冒放机理分析[J].采矿与安全工程学报,2017,34(4):644-649.MA Wenqiang,WANG Tongxu,QU Kongdian.Analysis on difficult caving mechanism of high toughness coal seam based on thin plate model[J].Journal of Mining&Safety Engineering,2017,34(4):644-649.
    [19]侴万禧,魏善斌,臧德胜.立井井壁应力的套筒致裂测试及其分析[J].岩土工程学报,1995,17(1):61-65.CHOU Wanxi,WEI Shanbin,ZANG Desheng.Measurement and analysis of shaft lining stress[J].Journal of Geotechnical Engineering,1995,17(1):61-65.
    [20]徐秉业,刘信声.应用弹塑性力学[M].北京:清华大学出版社,2002:35-38.
    [21]经来旺,高全臣,徐辉东,等.冻结壁融化阶段井壁温度应力研究[J].岩土力学,2004,25(9):1357-1362.JING Laiwang,GAO Quanchen,XU Huidong,et al.Thermal stress analysis of shaft in melting stage of frozen wall[J].Rock and Soil Mechanics,2004,25(9):1357-1362.
    [22]杨海朋,白冰,聂庆科.竖井井壁竖向附加力的理论计算方法[J].北京交通大学学报,2014,38(6):100-105.YANG Haipeng,BAI Bing,NIE Qingke.Theoretical study on shaft wall of vertical additional force[J].Journal of Beijing Jiaotong University,2014,38(6):100-105.
    [23]李宗利,杜守来.高渗透孔隙水压对混凝土力学性能的影响试验研究[J].工程力学,2011,28(11):72-77.LI Zongli,DU Shoulai.Experimental study on mechanical properties of concrete due to high seepage pore water pressure[J].Engineering Mechanics,2011,28(11):72-77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700