用户名: 密码: 验证码:
三(三甲基硅烷)亚磷酸酯添加剂改善高镍三元正极材料的高电压循环性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Tris(trimethylsilane) Phosphite Additive for Improving the High Voltage Cycling Performance of a Nickel-Rich Layered Oxide Cathode Material
  • 作者:董庆雨 ; 毛亚云 ; 郭峰 ; 程振杰 ; 董厚才 ; 陈鹏 ; 康拓 ; 吴晓东 ; 沈炎宾 ; 陈立桅
  • 英文作者:DONG Qing-Yu;MAO Ya-Yun;GUO Feng;CHENG Zhen-Jie;DONG Hou-Cai;CHEN Peng;KANG Tuo;WU Xiao-Dong;SHEN Yan-Bin;CHEN Li-Wei;School of Nano Technology and Nano Bionics, University of Science and Technology of China;Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences;School of Materials Science and Engineering, Shanghai University;Nano Science and Technology Institute, University of Science and Technology of China;
  • 关键词:高镍三元正极材料 ; 三(三甲基硅烷)亚磷酸酯 ; 锂离子电池 ; 高能量密度
  • 英文关键词:nickel-rich layered oxide;;tris(trimethylsilane) phosphite;;lithium ion battery;;high energy density
  • 中文刊名:WJHX
  • 英文刊名:Chinese Journal of Inorganic Chemistry
  • 机构:中国科学技术大学纳米技术与纳米仿生学院;中国科学院苏州纳米技术与纳米仿生研究所;上海大学材料科学与工程学院;中国科学技术大学纳米科学技术学院;
  • 出版日期:2019-06-10
  • 出版单位:无机化学学报
  • 年:2019
  • 期:v.35
  • 基金:国家科技部(No.2016YFB0100102);; 中国科学院战略性先导专项(No.XDA09010600,XDA09010303);; 国家自然科学基金(No.21625304,21733012)资助项目
  • 语种:中文;
  • 页:WJHX201906015
  • 页数:9
  • CN:06
  • ISSN:32-1185/O6
  • 分类号:124-132
摘要
研究了三(三甲基硅烷)亚磷酸酯(TMSP)添加剂对高镍三元正极材料Li Ni_(0.83)Mn_(0.05)Co_(0.12)O_2(LNMC811)高电压循环性能的影响。结合电化学表征、理论计算、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)、X射线衍射(XRD)等方法研究发现,在高电位(4.5 Vvs Li/Li~+)下,TMSP添加剂能够在LNMC811正极表面被氧化分解,生成一层富含导锂离子性能好的硅酸盐和电化学稳定的无机碳酸锂,且电解液主要分解产物(有机碳酸锂和氟化锂)含量较少的正极固体电解质界面(CEI)膜;分析表明覆盖在正极表面的薄而均匀的CEI膜,能够很好的降低充放电过程的极化电压,隔离电解液和正极的接触,减少电解液的分解,抑制金属离子的溶出,稳定正极晶体结构,使LNMC811材料能够在4.5 V(vs Li/Li~+)高电压循环时仍然保持良好的循环性能和倍率性能。
        Nickel-rich layered oxide cathode material,Li-Ni_xMn_yCo_(1-x-y)O_2(x≥0.8),has a specific capacity as high as 220 mAh·g~(-1)(x=0.83,0.1C,1C=180 mA·g~(-1))when being charged to 4.5 V(vs Li/Li~+),thus it is a very attractive material for the development of high energy density lithium ion batteries.In this work,we have regulated the composition and structure of the cathodeelectrolyte interface(CEI)film on the surface of a nickel-rich layered oxide cathode material(LiNi_(0.83)Mn_(0.05)Co_(0.12)O_2)by adding tris(trimethylsilane)phosphite(TMSP)in the electrolyte and investigated how the additive affect the electrochemical performance of the Li‖LiNi_(0.83)Mn_(0.05)Co_(0.12)O_2 cell.The TMSP additive helps producing a CEI layer on the surface of the LiNi_(0.83)Mn_(0.05)Co_(0.12)O_2 cathode material by electrochemical characterization methods,theoretical calculation,scanning electron microscopy(SEM),transmission electron microscopy(TEM),X-ray photoelectron spectroscopy(XPS),and X-ray diffraction(XRD).The CEI layer wasfound to be thin and uniformly distributed on the cathode surface even after 150 cycles at 1C between 2.8 to 4.5 V(vs Li/Li~+),and it was rich in Li_2CO_3and Si-O-C,but limited in electrolyte decomposition products,i.e.ROCO_2Li and LiF.The CEI layer effectively reduced the polarization of the Li‖LiNi_(0.83)Mn_(0.05)Co_(0.12)O_2 cell during cycling which could be due to uniform lithium diffusion that enabled by the uniform CEI thickness,and it was also able to protect the cathode material from structure damaging by suppressing the dissolution of transitional metal ions,resulting in improved high voltage(4.5 V vs Li/Li~+)cycling performance and rate capability of the Li‖LiNi_(0.83)Mn_(0.05)Co_(0.12)O_2 cells.
引文
[1] Armand M, Tarascon J M. Nature, 2008,451(7179):652-657
    [2] Liu Z L, Yu A S, Lee J Y, et al. J. Power Sources, 1999,81:416-419
    [3] Li W D, Kim U H, Dolocan A, et al. ACS Nano, 2017,11(6):5853-5863
    [4] Zheng F H, Yang C H, Xiong X H, et al. Angew. Chem. Int.Ed., 2015,54(44):13058-13062
    [5] Wu Z Z, Ji S P, Zheng J X, et al. Nano Lett., 2015,15(8):5590-5596
    [6] Kasnatscheew J, Evertz M, Wagner R, et al. J. Phys. Chem.C, 2017,121(3):1521-1529
    [7] Xu K. Chem. Rev., 2004,104(10):4303-4417
    [8] Zuo D X, Tian G L, Li X, et al. J. Alloys Compd., 2017,706:24-40
    [9] Park K, Yu S, Lee C, et al. J. Power Sources, 2015,296:197-203
    [10]Li Y, Li W D, You Y, et al. Adv. Energy Mater., 2018,8(29):1801957
    [11]Deng B W, Sun D M, Wan Q, et al. Acta Chim. Sinica,2018,76(4):259-277
    [12]Komaba S, Ishikawa T, Yabuuchi N, et al. ACS Appl. Mater.Interfaces, 2011,3(11):4165-4168
    [13]Rong H B, Xu M Q, Xing L D, et al. J. Power Sources,2014,261:148-155
    [14]Wang Z S, Xing L D, Li J H, et al. Electrochim. Acta, 2015,184:40-46
    [15]Yan G C, Li X H, Wang Z X, et al. J. Power Sources, 2014,248:1306-1311
    [16]Yim T, Han Y K. ACS Appl. Mater. Interfaces, 2017,9(38):32851-32858
    [17]Xu G J, Pang C G, Chen B B, et al. Adv. Energy Mater.,2018,8(9):1701398
    [18]Noh H J, Youn S, Yoon C S, et al. J. Power Sources, 2013,233:121-130
    [19]Goodenough J B, Kim Y. Chem. Mater., 2009,3(22):587-603
    [20]Han Y K, Yoo J, Yim T, et al. J. Mater. Chem. A, 2015,3(20):10900-10909
    [21]Qian Y X, Niehoff P, Borner M, et al. J. Power Sources,2016,329:31-40
    [22]Liao B, Li H Y, Xu M Q, et al. Adv. Energy Mater., 2018,8(22):1800802
    [23]Aurbach D, Levi M D, Levi E, et al. J. Phys. Chem. B, 1997,101(12):2195-2206
    [24]Verma P, Maire P, Novak P, et al. Electrochim. Acta, 2010,55(22):6332-6341

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700