用户名: 密码: 验证码:
六盘水煤田杨梅树向斜主要煤层孔隙结构特征研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on pore properties of main coal seams of Yangmeishu syncline in Liupanshui coalfield
  • 作者:李惠 ; 王福国 ; 李振 ; 刘亚然 ; 刘瑞国 ; 毕彩芹 ; 单衍胜
  • 英文作者:LI Hui;WANG Fuguo;LI Zhen;LIU Yaran;LIU Ruiguo;BI Caiqin;SHAN Yansheng;China Coal Geology Group Company Limited;School of Energy Resources,China University of Geosciences,Beijing;Oil and Gas Survey Centre,China Geological Survey Bureau;
  • 关键词:杨梅树向斜 ; 压汞 ; 低温液氮吸附 ; 孔隙结构 ; 有利煤层
  • 英文关键词:Yangmeishu syncline;;mercury intrusion;;low temperature nitrogen adsorption;;pore structure;;favorable coal seam
  • 中文刊名:MTKJ
  • 英文刊名:Coal Science and Technology
  • 机构:中煤地质集团有限公司;中国地质大学(北京)能源学院;中国地质调查局油气资源调查中心;
  • 出版日期:2019-07-15
  • 出版单位:煤炭科学技术
  • 年:2019
  • 期:v.47;No.536
  • 基金:中国地质调查局油气地质调查资助项目(121201021000150014)
  • 语种:中文;
  • 页:MTKJ201907031
  • 页数:10
  • CN:07
  • ISSN:11-2402/TD
  • 分类号:239-248
摘要
为查明六盘水煤田杨梅树向斜上二叠统主要煤层孔隙结构特征,对其进行系统采样,基于压汞、低温液氮吸附试验分析了煤层孔隙发育特征及影响因素,并初步优选有利层段。结果表明:压汞测试各煤层以小孔、微孔为主,且微孔比表面积占绝对优势;低温液氮测试多数煤层以小孔、中孔为主,比表面积占比以微孔、小孔最大;压汞曲线和吸附回线均可划分为3种类型,分别代表一定的孔隙形态和连通性;大致以镜质体反射率Ro,max=1.65%为界,压汞测得孔容和比表面积随煤级先升后降,与无机组分和干燥基灰分含量呈负相关,而Barrett-Joyner-Halenda(BJH)孔容和Branauer-EmmettTeller(BET)比表面积与各影响因素的关系呈正相关,2种试验结果与镜质组含量关系均不明显。经对比分析认为5-2、5-3、13-1、33、34号煤层具有煤层气开发的孔隙条件。
        The main coal seams of Upper Permian in Yangmeishu syncline of Liupanshui coalfield were systematically sampled and tested by the low-temperature liquid nitrogen adsorption and mercury intrusion method to analyze pore properties and its influence factors,and favorable intervals were preliminarily selected. The results show that each coal sample tested by mercury intrusion is mainly composed of minipores and micropores,and micropores take the dominant position in pore specific surface area.The low-temperature liquid nitrogen adsorption test mostly consists of minipores and mesopores.The percentage of specific surface area of each coal sample is the largest with micropores and minipores.Mercury intrusion curve and adsorption loop can be divided into three types which represent respectively a certain pore morphology and connectivity.Mercury intrusion pore volume and specific surface area showed a trend of rising first and then falling with the the ratio Ro,max= 1.65% as the cut-off point,and they were negatively correlated with the inorganic component and the dry ash content,while the Branauer-Emmett-Teller( BJH) pore volume and Branauer-Emmett-Teller( BET) specific surface area were positively correlated with the influencing factors.The relationship between the two test results and the vitrinite content was not obvious.Considering the pore properties of various coal seams,it is determined that coal seams such as No.5-2、5-3、13-1、33、34 have pore conditions for CBM development.
引文
[1]范俊佳,琚宜文,柳少波,等.不同煤储层条件下煤岩微孔结构及其对煤层气开发的启示[J].煤炭学报,2013,38(3):441-447.FAN Junjia,JU Yiwen,LIU Shaobo,et al. Micro-pore structure of coal under different reservoir conditions and its implication for coalbed methane development[J]. Journal of China Coal Society,2013,38(3):441-447.
    [2]陈萍,唐修义.低温氮吸附法与煤中微孔隙特征的研究[J].煤炭学报,2001,26(5):552-556.CHEN Ping,TANG Xiuyi. The research on the adsorption of nitrogen in low temperature and micro-pore properties in coal[J].Journal of China Coal Society,2001,26(5):552-556.
    [3]姚艳斌,刘大锰,黄文辉,等.两淮煤田煤储层孔-裂隙系统与煤层气产出性能研究[J].煤炭学报,2006,31(2):163-168.YAO Yanbin,LIU Dameng,HUANG Wenhui,et al. Research on the pore-fractures system properties of coalbed methane reservoirs and recovery in Huainan and Huaibei coalfields[J]. Journal of China Coal Society,2006,31(2):163-168.
    [4]秦勇.中国高煤级煤的显微岩石学特征及结构演化[M].徐州:中国矿业大学出版社,1994:95-99.
    [5]孟召平,刘珊珊,王保玉,等.不同煤体结构煤的吸附性能及其孔隙结构特征[J].煤炭学报,2015,40(8):1865-1870.MENG Zhaoping,LIU Shanshan,WANG Baoyu,et al. Adsorption capacity and its pore structure of coals with different coal body structure[J]. Journal of China Coal Society,2015,40(8):1865-1870.
    [6]降文萍,宋孝忠,钟玲文.基于低温液氮试验的不同煤体结构煤的孔隙特征及其对瓦斯突出影响[J].煤炭学报,2011,36(4):609-614.JIANG Wenping,SONG Xiaozhong,ZHONG Lingwen.Research on the pore properties of different coal body structure coals and the effects on gas outburst based on the low-temperature nitrogen adsorption method[J].Journal of China Coal Society,2011,36(4):609-614.
    [7]赵兴龙,汤达祯,许浩,等.煤变质作用对煤储层孔隙系统发育的影响[J].煤炭学报,2010,35(9):1506-1511.ZHAO Xinglong,TANG Dazhen,XU Hao,et al.Effect of coal metamorphic process on pore system of coal reservoirs[J]. Journal of China Coal Society,2010,35(9):1506-1511.
    [8]陈贞龙,汤达祯,许浩,等.黔西滇东地区煤层气储层孔隙系统与可采性[J].煤炭学报,2010,35(S1):158-163.CHEN Zhenlong,TANG Dazhen,XU Hao,et al. The pore system properties of coalbed methane reservoirs and recovery in western Guizhou and eastern Yunnan[J]. Journal of China Coal Society,2010,35(S1):158-163.
    [9]单衍胜,毕彩芹,迟焕鹏,等.六盘水地区杨梅树向斜煤层气地质特征与有利开发层段优选[J].天然气地球科学,2018,29(1):122-129.SHAN Yansheng,BI Caiqin,CHI Huanpeng,et al.Geological characteristics of coalbed methane and optimization for favorable productive intervals of Yangmeishu syncline in Liupanshui area[J].Natural Gas Geoscience,2018,29(1):122-129.
    [10]毕彩芹,迟焕鹏,单衍胜,等.水城矿区煤层气储层特征及压裂改造工艺研究[J].煤炭科学技术,2017,45(9):182-187.BI Caiqin,CHI Huanpeng,SHAN Yansheng,et al. Analysis of coalbed methane reservoir characteristics and reconstruction process in Shuicheng Mining Area[J].Coal Science and Technology,2017,45(9):182-187.
    [11]ХодотB B.煤与瓦斯突出[M].宋世钊,王佑安,译.北京:中国工业出版社,1996.
    [12] CHEN Shangbin,WANG Yanming,et al.Influence of magma intrusion on gas outburst in a low rank coal mine[J]. International Journal of Mining Science and Technology,2012,22(2):259-266.
    [13]严继民,张启元.吸附与聚集[M].北京:科学出版社,1979:108-120.
    [14]朱炎铭,王阳,陈尚斌,等.页岩储层孔隙结构多尺度定性-定量综合表征:以上扬子海相龙马溪组为例[J].地学前缘,2016,23(1):154-163.ZHU Yanming,WANG Yang,CHEN Shangbin,et al.Qualitativequantitative multiscale characterization of pore structures in shale reservoirs:A case study of Longmaxi Formation in the Upper Yangtze area[J]. Earth Science Frontiers,2016,23(1):154-163.
    [15]巨文军,申丽红,郭丹丹.氮气吸附法和压汞法测定Al2O3载体孔结构[J].广东化工,2009,36(8):213-214.JU Wenjun,SHEN Lihong,GUO Dandan. Nitrogen adsorption method and mercury injection method determination the pore structure of Alumina Carrier[J]. Guangdong Chemical Industry,2009,36(8):213-214.
    [16]高尚,王亮,高杰,张锐.基于分形理论的不同变质程度硬煤孔隙结构试验研究[J].煤炭科学技术,2018,46(8):93-100.GAO Shang,WANG Liang,GAO Jie,ZHANG Rui. Experimental study on pore structures of hard coal with different metamorphic grade based on fractal theory[J]. Coal Science and Technology,2018,46(8):93-100.
    [17]谢晓永,唐洪明,王春华,等.氮气吸附法和压汞法在测试泥页岩孔径分布中的对比[J].天然气工业,2006,26(12):100-102.XIE Xiaoyong,TANG Hongming,WANG Chunhua,et al. Contrast of nitrogen adsorpotion method and mercury porosimetry method in analyis of shale’s pore size distribution[J].Natural Gas Industry,2006,26(12):100-102.
    [18]周龙刚,吴财芳.黔西比德-三塘盆地主采煤层孔隙特征[J].煤炭学报,2012,37(11):1878-1884.ZHOU Longgang,WU Caifang. Pore characteristics of the main coal seams in Bide-Santang Basin in Western Guizhou Province[J].Journal of China Coal Society,2012,37(11):1878-1884.
    [19]傅雪海,秦勇,韦重韬,等.煤层气地质学[M].徐州:中国矿业大学出版社,2007:46-47.
    [20]杨光,秦勇,吴财芳,等.新疆和什托洛盖盆地西山窑组低阶煤孔隙结构特征[J].煤炭科学技术,2017,45(4):123-130.YANG Guang,QIN Yong,WU Caifang,et al. Pore structure features of Xishanyao Formation low rank coal in Hoxtolgay Basin of Xinjiang[J]. Coal Science and Technology,2017,45(4):123-130.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700