用户名: 密码: 验证码:
海底表层沉积物声速特性研究进展与探讨
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress and discussion on sound velocity characteristics of seafloor surface sediments
  • 作者:邹大鹏 ; 肖体兵 ; 龙建军 ; 卢博 ; 李赶先
  • 英文作者:Zou Dapeng;Xiao Tibing;Long Jianjun;Lu Bo;Li Ganxian;Guangdong Provincial Key Lab of Computer Integrated Manufacturing, Guangdong University of Technology;State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences;CAS Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences;
  • 关键词:海底沉积物 ; 切变波 ; 压缩波 ; 声速 ; 原位测量
  • 英文关键词:seafloor sediment;;shear wave;;compressional wave;;sound velocity;;in-situ measurement
  • 中文刊名:SEAC
  • 机构:广东工业大学广东省计算机集成制造重点实验室;中国科学院声学研究所声场声信息国家重点实验室;中国科学院南海海洋研究所中国科学院边缘海与大洋地质重点实验室;
  • 出版日期:2019-01-15
  • 出版单位:海洋学报
  • 年:2019
  • 期:v.41
  • 基金:国家自然科学基金(41776043,41476028);; 广东省省级科技计划项目(2017A010102012);; 声场声信息国家重点实验室基金(SKLA201606)
  • 语种:中文;
  • 页:SEAC201901016
  • 页数:12
  • CN:01
  • ISSN:11-2055/P
  • 分类号:164-175
摘要
海底表层沉积物具有多相、多颗粒、多形态的组成结构,导致其声学特性复杂多样。通过分析压缩波速度和切变波速度特性的研究现状,指出有待于解决的科学问题和关键技术问题。在分析国内外有关海底沉积层声速特性研究基础上,提出采取系统、可控的实验测量手段解决当前测量存在的4点问题。综合分析了压缩波速度和切变波速度存在的统计回归关系和理论分析关系,探讨了当前地声反演、采样样品声学测量、原位声学测量3种方法存在的测量尺度、测量频率、测量状态等的差异,探讨建立不同测量方法和测量技术对测量结果进行统一性解释的方法,从而获得不同类型、不同区域的海底表层沉积物真实的声速特性。最后,从实验室声学测量、物理力学参数测量、流固耦合特性分析、原位测量及海底监测、采样测量与原位测量的误差分析及校正、海底大纵深声学测量6个方面提出技术需求,为提高声学探测海洋和海底的精度服务,推动海洋声学探测和海洋工程发展。
        The seafloor surficial sediments have multiphase, multi-particle and multi-morphological structures, which lead to complex and diverse acoustic wave propagation process. Based on the analysis of the characteristics of compressional wave velocity and shear wave velocity, the scientific problems and key technical problems to be solved are pointed out. On the basis of analyzing the research status of sound velocity characteristics at home and abroad, this paper suggests that a systematic and controllable experimental measurement method to solve the four problems existing in current measurement. With a comprehensive analysis on the relationship between compressional wave velocity and shear wave velocity including their regression relation and theoretical analysis, differences on measuring scale, measuring frequency, and measurement status are discussed for current three kinds of methods including geoacoustic inversion, samples acoustic measurement, and in-situ acoustic measurement. And also the methods on the consistency of explanation for measurement results of different measurement methods and measurement techniques are discussed, to obtain the real seabed sediment acoustic characteristics of different types and different regions. Finally, six technical demands are presented such as the laboratory measurement of physical and mechanical parameter measurement, acoustic analysis of fluid solid coupling characteristics, in-situ measurement and monitoring of submarine sediments, error analysis and correction between sampling analysis and in-situ measurement, and the surface acoustic measurement technology of deep sediments, with the aim to improve the accuracy of acoustic detection of the sea and the seafloor, and promote development of ocean engineering.
引文
[1] 李风华, 张仁和. 由脉冲波形与传播损失反演海底声速与衰减系数[J]. 声学学报, 2000, 25(4):297-302. Li Fenghua, Zhang Renhe. Bottom sound speed and attenuation inverted by using pulsed waveform and transmission loss[J]. Acta Acustica, 2000, 25(4):297-302.
    [2] 杨坤德, 马远良. 利用海底反射信号进行地声参数反演的方法[J]. 物理学报, 2009, 58(3):1798-1805. Yang Kunde,Ma Yuanliang. A geoacoustic inversion method based on bottom reflection signals[J]. Acta Physica Sinica, 2009, 58(3):1798-1805.
    [3] 屈科, 胡长青, 赵梅. 利用传播损失反演海底单参数[J]. 声学学报, 2013, 38(4):472-476. Qu Ke, Hu Changqing, Zhao Mei. Single parameter inversion using transmission loss in shallow water[J]. Acta Acustica, 2013, 38(4):472-476.
    [4] 于盛齐, 黄益旺, 吴琼. 基于等效密度流体近似反射模型反演海底参数[J]. 声学学报, 2014, 39(4):417-427. Yu Shengqi, Huang Yiwang, Wu Qiong. Bottom parameters inversion based on reflection model of effective density fluid approximation[J]. Acta Acustica, 2014, 39(4):417-427.
    [5] Kim G Y, Kim D C, Dong G Y, et al. Physical and geoacoustic properties of surface sediments off eastern Geoje Island, South Sea of Korea[J]. Quaternary International, 2009, 230(1):21-33.
    [6] Yu S Q, Liu B H, Yu K B, et al. Study on sound-speed dispersion in a sandy sediment at frequency ranges of 0.5-3 kHz and 90-170 kHz[J]. China Ocean Engineering, 2017, 31(1):103-113.
    [7] 卢博, 李赶先, 黄韶健. 海底浅层介质切变波的初步研究[J]. 热带海洋学报, 2004, 23(4):11-18. Lu Bo, Li Ganxian, Huang Shaojian. A preliminary study of shear wave in seafloor surface sediments[J]. Journal of Tropical Oceanography, 2004, 23(4):11-18.
    [8] 潘国富, 叶银灿, 来向华, 等. 海底沉积物实验室剪切波速度及其与沉积物的物理性质之间的关系[J]. 海洋学报, 2006, 28(5):64-68. Pan Guofu, Ye Yincan, Lai Xianghua, et al. Shear wave velocity of seabed sediment from laboratory measurements and its relationship with physical properties of sediment[J]. Haiyang Xuebao, 2006, 28(5):64-68.
    [9] 孟祥梅, 刘保华, 阚光明, 等. 南黄海海底沉积物声学特性及其影响因素试验研究[J]. 海洋学报, 2012, 34(6):74-82. Meng Xiangmei, Liu Baohua, Kan Guangming, et al. An experimental study on acoustic properties and their influencing factors of marine sediment in the southern Huanghai Sea[J]. Haiyang Xuebao, 2012, 34(6):74-82.
    [10] Robb G B N, Best A I, Dix J K, et al. Measurement of the in situ compressional wave properties of marine sediments[J]. IEEE Journal of Oceanic Engineering, 2007, 32(2):484-496.
    [11] Yang J, Tang D J. Direct measurements of sediment sound speed and attenuation in the frequency band of 2-8 kHz at the target and reverberation experiment site[J]. IEEE Journal of Oceanic Engineering,2017, 42(4):1102-1109.
    [12] Zimmer M A, Bibee L D, Richardson M D. Measurement of the frequency dependence of the sound speed and attenuation of seafloor sands from 1 to 400 kHz[J]. IEEE Journal of Oceanic Engineering, 2010, 35(3):538-557.
    [13] Ballard M S,Lee K M,Mcneese A R,et al. Development of a system for in situ measurements of geoacoustic properties during sediment coring[J]. Journal of the Acoustical Society of America, 2016, 139(4):2125-2125.
    [14] Jackson D R, Richardson M D. 高频海底声学[M]. 刘保华, 阚光明, 李官保, 等译. 北京: 海洋出版社, 2014. Jackson D R, Richardson M D. High-Frequency Seafloor Acoustics[M]. Liu Baohua, Kan Guangming, Li Guanbao, et al, translation. Beijing: China Ocean Press, 2014.
    [15] Buckingham M J. Theory of compressional and shear waves in fluidlike marine sediments[J]. Journal of the Acoustical Society of America, 1998, 103(1):288-299.
    [16] Biot M A. Theory of elastic waves in a fluid-saturated porous solid, Ⅱ. High-frequency range[J]. Journal of the Acoustical Society of America, 1956, 28(2):179-191.
    [17] Stoll R D. Theoretical aspects of sound transmission in sediments[J]. Journal of the Acoustical Society of America, 1980, 68(5):1341-1350.
    [18] Williams K L, Jackson D R, Thorsos E I, et al. Comparison of sound speed and attenuation measured in a sandy sediment to predictions based on the Biot theory of porous media [J]. IEEE Journal of Oceanic Engineering, 2002, 27(3):413-428.
    [19] Zhou J, Zhang X, Knobles D P. Low-frequency geoacoustic model for the effective properties of sandy seabottoms[J]. Journal of the Acoustical Society of America, 2009, 125(5):2847-2866.
    [20] Kimura M. Shear wave speed dispersion and attenuation in granular marine sediments[J]. Journal of the Acoustical Society of America, 2013, 134(1):144-155.
    [21] Kimura M. Velocity dispersion and attenuation in granular marine sediments: Comparison of measurements with predictions using acoustic models[J]. Journal of the Acoustical Society of America, 2011, 129(6): 3544-3561.
    [22] Lee K M, Ballard M S, Mcneese A R, et al. In situ measurements of sediment acoustic properties in Currituck Sound and comparison to models[J]. Journal of the Acoustical Society of America, 2016, 140(5):3593-3606.
    [23] Zimmer M A, Prasad M, Mavko G, et al. Seismic velocities of unconsolidated sands: Part 1-Pressure trends from 0.1 to 20 MPa [J]. Geophysics, 2007, 72(1):E1-E13.
    [24] Lu Bo, Li Ganxian, Huang Shaojian. A preliminary study of shear wave in seafloor surface sediments[J]. Marine Georesources & Geotechnology, 2006, 24(1):17-28.
    [25] Ojha M,Sain K. Empirical trends of velocity-porosity and velocity-density in shallow sediment in Kerala-Konkan Basin on the west coast of India[C]// SPG Hyderabad 2012. 2012:444.
    [26] Hamilton E L, Bucker H P, Keir D L, et al. Velocities of compressional and shear waves in marine sediments determined in situ from a research submersible[J]. Journal of Geophysical Research, 1970, 75(20):4039-4049.
    [27] Richardson M D, Lavoie D L, Briggs K B. Geoacoustic and physical properties of carbonate sediments of the Lower Florida Keys[J]. Geo-Marine Letters, 1997, 17(4):316-324.
    [28] 宋海斌, 松林修, 吴能有, 等. 海洋天然气水合物的地球物理研究(Ⅰ):岩石物性[J]. 地球物理学进展, 2001, 16(2):118-126. Song Haibin, Song Linxiu, Wu Nengyou, et al. Geophysical researches on marine gas hydrates (I): Physical properties[J]. Progress in Geophysics, 2001, 16(2):118-126.
    [29] 周建平, 吕文正, 陶春辉. 海底柱状沉积物超声测量[J]. 海洋学研究, 2003, 21(4):27-34. Zhou Jianping, Lv Wenzheng, Tao Chunhui. Ultrasonic measurement of seafloor sediment cores[J]. Journal of Marine Sciences, 2003, 21(4):27-34.
    [30] 王润田. 海底声学探测与底质识别技术的新进展[J]. 声学技术, 2002, 21(1):96-98. Wang Runtian. Progress in detecting the geological formations and sediment properties by sound[J]. Technical Acoustics, 2002, 21(1):96-98.
    [31] 阚光明, 邹大鹏, 孙蕾, 等. 浅海沉积声学原位探测系统研制及深海功能拓展[J]. 海洋测绘, 2014, 34(5):79-82. Kan Guangming, Zou Dapeng, Sun Lei, et al. Development of sediment acoustic in situ measurement system for shallow water and its functioned expansion for deep sea[J]. Hydrographic Surveying and Charting, 2014, 34(5):79-82.
    [32] 邹大鹏, 阚光明, 龙建军. 海底浅表层沉积物原位声学测量方法探讨[J]. 海洋学报, 2014, 36(11):111-119. Zou Dapeng, Kan Guangming, Long Jianjun. Methods of in-situ acoustic measurement of seafloor surface sediment[J]. Haiyang Xuebao, 2014, 36(11):111-119.
    [33] 吴自银, 郑玉龙, 初凤友, 等. 海底浅表层信息声探测技术研究现状及发展[J]. 地球科学进展, 2005, 20(11):1210-1217. Wu Ziyin, Zheng Yulong, Chu Fengyou, et al. Research status and prospect of sonar-detecting techniques near submarine[J]. Advances in Earth Science, 2005, 20(11):1210-1217.
    [34] 陶春辉, 王东, 金翔龙, 等. 海底沉积物声学特性和原位测试技术[M]. 北京:海洋出版社, 2006. Tao Chunhui, Wang Dong, Jin Xianglong, et al. Acoustic Characteristics and In-Situ Testing Techniques for Seafloor Sediments[M]. Beijing: China Ocean Press, 2006.
    [35] Hamilton E L, Bachman R T. Sound velocity and related properties of marine sediments[J]. Journal of the Acoustical Society of America, 1982, 72(6):1891-1904.
    [36] 侯正瑜, 郭常升, 王景强, 等. 一种新型海底沉积物声学原位测量系统的研制及应用[J]. 地球物理学报, 2015, 58(6):1976-1984. Hou Zhengyu, Guo Changsheng, Wang Jingqiang, et al. Development and application of a new type in-situ acoustic measurement system of seafloor sediments[J]. Chinese Journal of Geophysics, 2015, 58(6):1976-1984.
    [37] Barbagelata A, Richardson M D, Miaschi B, et al. ISSAMS:an in situ sediment acoustic measurement system[M]// Shear Waves in Marine Sediments. Dordrecht: Kluwer Academic Publishers, 1991:305-312.
    [38] Fu S S, Wilkens R H, Frazer L N. Acoustic lance: New in situ seafloor velocity profiles[J]. Journal of the Acoustical Society of America, 1996, 99(1):234-242.
    [39] Briggs K B. Comparison of Measured Compressional and Shear Wave Velocity Values with Predictions from Biot Theory[M]//Shear Waves in Marine Sediments. Netherlands: Kluwer Academic Publishers, 1991:121-130.
    [40] Richardson M D. Variability of shear wave speed and attenuation in surficial marine sediments[M]//Impact of Littoral Environmental Variability on Acoustic Predictions and Sonar Performance. Netherlands:Kluwer Academic Publishers, 2002:107-114.
    [41] Buckingham M J. Compressional and shear wave properties of marine sediments: Comparisons between theory and data[J]. Journal of the Acoustical Society of America, 2005, 117(1):137-152.
    [42] 胡高伟, 业渝光, 张剑, 等. 南海沉积物中天然气水合物饱和度与声学特性的关系[J]. 石油学报, 2013, 34(6):1112-1118. Hu Gaowei, Ye Yuguang, Zhang Jian, et al. Relationship between gas hydrate saturation and acoustic properties of sediments in the South China Sea[J]. Acta Geologica Sinica, 2013, 34(6):1112-1118.
    [43] 周杨锐, 董明明, 吴海京, 等. 渤海浅层沉积物剪切波速与深度的相关性分析[J]. 工程勘察, 2011, 39(6):90-93. Zhou Ruiyang, Dong Mingming, Wu Haijing, et al. Correlative analysis between shear wave velocity and depth of shallow sediments in Bohai Gulf[J]. Geotechnical Investigation & Surveying, 2011, 39(6):90-93.
    [44] Hamilton E L. VP/VS and Poisson's ratios in marine sediments and rocks[J]. Journal of the Acoustical Society of America, 1979, 66(4):1093-1101.
    [45] 邹大鹏, 吴百海, 卢博. 海底沉积物声速经验方程分析与研究[J]. 海洋学报, 2007, 29(4):43-50. Zou Dapeng, Wu Baihai, Lu Bo. An analysis and study on the sound velocity empirical equations of seafloor sediments[J]. Haiyang Xuebao, 2007, 29(4):43-50.
    [46] Argo IV T F, Guild M D, Wilson P S, et al. Sound speed in water-saturated glass beads as a function of frequency and porosity [J]. Journal of the Acoustical Society of America,2011,129(4):EL101-EL107.
    [47] 邹大鹏. 海底沉积物压缩波声速比与物理特性的关系[J]. 声学学报, 2018, 43(1):41-51. Zou Dapeng. Relationship between the sound speed ratio of the compressional wave and the physical characteristics of seafloor sediments[J]. Acta Acustica, 2018, 43(1):41-51.
    [48] 邹大鹏, 刘伟, 龙建军. 海底沉积物压缩波速度与切变波速度的关系[J]. 声学学报, 2018,43(6):951-960. Zou Dapeng, Liu Wei, Long Jianjun. Relationship of sound speeds between compressional wave and shear wave of seafloor sediments[J]. Acta Acustica,2018,43(6):951-960.
    [49] Thorsos E I, Williams K L, Chotiros N P, et al. An overview of SAX99: Acoustic measurements[J]. IEEE Journal of Oceanic Engineering, 2001, 26(1):4-25.
    [50] Henfer B T, Jackson D R, Williams K L, et al. Mid- to high-frequency acoustic penetration and propagation measurements in a sandy sediment[J]. IEEE Journal of Oceanic Engineering, 2009, 34(4):372-387.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700