用户名: 密码: 验证码:
新型PtPd合金纳米颗粒修饰g-C_3N_4纳米片以提高可见光照射下光催化产氢活性(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Novel PtPd alloy nanoparticle-decorated g-C_3N_4 nanosheets with enhanced photocatalytic activity for H_2 evolution under visible light irradiation
  • 作者:肖楠 ; 李松松 ; 刘霜 ; 徐博冉 ; 李延东 ; 高旸钦 ; 戈磊 ; 卢贵武
  • 英文作者:Nan Xiao;Songsong Li;Shuang Liu;Boran Xu;YANDong Li;Yangqin Gao;Lei Ge;Guiwu Lu;State Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing;College of New Energy and Materials, China University of Petroleum Beijing;
  • 关键词:g-C_3N_4纳米片 ; PtPd合金纳米颗粒 ; 产氢 ; 光催化
  • 英文关键词:g-C_3N_4 nanosheets;;PtPd alloy nanoparticles;;H_2 evolution;;Photocatalysis
  • 中文刊名:CHUA
  • 英文刊名:Chinese Journal of Catalysis
  • 机构:中国石油大学(北京)重质油国家重点实验室;中国石油大学(北京)新能源与材料学院;
  • 出版日期:2019-03-05
  • 出版单位:催化学报
  • 年:2019
  • 期:v.40
  • 基金:supported by the National Natural Science Foundation of China(51572295,21273285,21003157);; the Beijing Nova Program(2008B76);; the Science Foundation of China University of Petroleum Beijing(KYJJ2012-06-20 and 2462016YXBS05)~~
  • 语种:英文;
  • 页:CHUA201903010
  • 页数:10
  • CN:03
  • ISSN:21-1601/O6
  • 分类号:126-135
摘要
石墨相氮化碳(g-C_3N_4)纳米片因其廉价、易得、无毒等优点而在光催化领域被广泛应用和研究.但单一的g-C_3N_4存在光生电子与空穴易复合等缺陷,而助催化剂的存在可以促进电荷转移,延长载流子寿命,从而提高光催化性能.本文通过合成PtPd双金属合金纳米颗粒作为助催化剂,对g-C_3N_4纳米片光催化剂进行修饰以提高可见光照射下的光催化产氢速率.g-C_3N_4是以尿素为原材料,通过高温热缩聚和热刻蚀的方法合成, PtPd/g-C_3N_4复合光催化剂通过化学还原沉积法合成.对所获得的复合光催化剂进行了XRD测试并将结果与PdPt标准卡片进行了对比,结果表明,各峰的位置都能有较好的对应,说明成功合成了PdPt.采用TEM对PtPd/g-C_3N_4的形貌进行观察,发现g-C_3N_4呈薄片状,且PdPt颗粒较为均匀地分布在其表面.XPS测试发现, PtPd/g-C_3N_4复合样品中Pt和Pd元素的峰值较Pt/g-C_3N_4和Pd/g-C_3N_4均发生0.83eV的偏移,进一步说明合成了PtPd双金属合金纳米颗粒.DRS测试表明, g-C_3N_4的带隙宽度为2.69eV,而PtPd双金属合金纳米颗粒的负载有效地减小了禁带宽度,从而提高了光催化剂对光的利用率.光催化产氢性能实验发现,当g-C_3N_4负载PtPd双金属合金纳米颗粒后,光催化产氢速率大幅度提高,其中负载量为0.2wt%的PtPd/g-C_3N_4复合光催化剂的产氢速率最高,为1600.8μmol g~(–1)h~(–1),是纯g-C_3N_4纳米片的800倍.向光催化体系中添加10gK_2HPO_4后,产氢速率提高到2885.0μmolg~(–1)h~(–1).当二元合金中Pt:Pd比为1:1时, PtPd/g-C_3N_4复合光催化剂上的产氢速率最高,分别是Pt/g-C_3N_4和Pd/g-C_3N_4上的3.6倍和1.5倍.另外,在420nm处量子效率为5.5%.PtPd/g-C_3N_4复合光催化剂还表现出很好的稳定性,能够在完成4次光催化实验循环后仍然保持其良好的光催化活性.对PtPd/g-C_3N_4复合光催化剂进行了一系列光电化学表征.PL结果表明, PtPd/g-C_3N_4复合光催化剂与纯g-C_3N_4相比荧光强度减弱,说明PtPd/g-C_3N_4复合光催化剂有较慢的光生电子-空穴复合速率,这可以更有效地使电荷分离,从而提高光催化活性.根据光催化反应和表征分析结果提出了复合光催化剂上水分解产氢可能的机理,即PtPd/g-C_3N_4之间的协同作用有助于提高复合光催化剂的光催化活性.
        PtP d bimetallic alloy nanoparticle(NP)-modified graphitic carbon nitride(g-C_3N_4) nanosheet photocatalysts were synthesized via chemical deposition precipitation. Characterization of the photocatalytic H_2 evolution of the g-C_3N_4 nanosheets shows that it was significantly enhanced when PtPd alloy NPs were introduced as a co-catalyst. The 0.2 wt% PtPd/g-C_3N_4 composite photocatalyst gave a maximum H_2 production rate of 1600.8 μmol g~(–1)h~(–1). Furthermore, when K_2HPO_4 was added to the reaction system, the H_2 production rate increased to 2885.0 μmol g~(–1)h~(–1). The PtPd/g-C_3N_4 photocatalyst showed satisfactory photocatalytic stability and was able to maintain most of its photocatalytic activity after four experimental photocatalytic cycles. In addition, a possible mechanism for the enhanced photocatalytic activity was proposed and verified by various photoelectric techniques. These results demonstrate that the synergistic effect between PtPd and g-C_3N_4 helps to greatly improve the photocatalytic activity of the composite photocatalyst.
引文
[1]A.Fujishima,K.Honda,Nature,1972,238,37-38.
    [2]H.Xu,S.S.Li,L.Ge,C.C.Han,Y.Q.Gao,D.S.Dai,Int.J.Hydrogen Energy,2017,42,22877-22886.
    [3]H.Xu,D.S.Dai,S.S.Li,L.Ge,Y.Q.Gao,Dalton Trans.,2018,47,348-356.
    [4]X.Q.Du,J.W.Huang,Y.Y.Feng,Y.Q.Ding,Chin.J.Catal.,2016,37,123-134.
    [5]S.S.Li,L.Wang,S.Liu,B.R.Xu,N.Xiao,Y.Q.Gao,W.Y.Song,L.Ge,J.Liu,ACS Sustainable Chem.Eng.,2018,6,9940-9950.
    [6]S.Cao,Y.Chen,C.J.Wang,X.J.Lv,W.F.Fu,Chem Commun.,2015,51,8708-8711.
    [7]J.Zhang,J.G.Yu,Y.M.Zhang,Q.Li,J.R.Gong,Nano Lett.,2011,11,4774-4779.
    [8]A.P.Gaikwad,C.A.Betty,Jagannath,A.Kumar,R.Sasikala,Mater.Sci.Semicond.Process.,2018,86,139-145.
    [9]S.S.Li,D.S.Dai,L.Ge,Y.Q.Gao,C.C.Han,N.Xiao,Dalton Trans,2017,46,10620-10629.
    [10]D.S.Dai,L.Wang,N.Xiao,S.S.Li,H.Xu,S.Liu,B.R.Xu,D.Lv,Y.Q.Gao,W.Y.Song,L.Ge,J.Liu,Appl.Catal.B,2018,233,194-201.
    [11]D.S.Dai,H.Xu,L.Ge,C.C.Han,Y.Q.Gao,S.S.Li,Y.Lu,Appl.Catal.B,2017,217,429-436.
    [12]W.Liu,L.Cao,W.Cheng,Y.Cao,X.Liu,W.Zhang,X.Mou,L.Jin,X.Zheng,W.Che,Q.Liu,T.Yao,S.Wei,Angew.Chem.Int.Ed.,2017,56,9312-9317.
    [13]F.Chen,H.Yang,X.Wang,H.G.Yu,Chin.J.Catal.,2017,38,296-304.
    [14]X.H.Wu,F.Y.Chen,X.F.Wang,H.G.Yu,Appl.Surf.Sci.,2018,427,645-653.
    [15]K.L.He,J.Xie,X.Y.Luo,J.Q.Wen,S.Ma,X.Li,Y.P.Fang,X.C.Zhang,Chin.J.Catal.,2017,38,240-252.
    [16]Y.Shiraishi,S.Kanazawa,Y.Kofuji,H.Sakamoto,S.Ichikawa,S.Tanaka,T.Hirai,Angew.Chem.Int.Ed.,2014,53,13454-13459.
    [17]Y.Zheng,L.Lin,X.Ye,F.Guo,X.Wang,Angew.Chem.Int.Ed.,2014,53,11926-11930.
    [18]C.C.Han,L.Ge,C.F.Chen,Y.J.Li,X.L.Xiao,Y.N.Zhang,L.L.Guo,Appl.Catal.B,2014,147,546-553.
    [19]X.Wu,S.J.Jiang,S.Q.Song,C.Z.Sun,Appl.Surf.Sci.,2018,430,371-379.
    [20]H.Zhou,P.Li,J.Liu,Z.P.Chen,L.L.Liu,D.Dontsova,R.Y.Yan,T.X.Fan,D.Zhang,J.H.Ye,Nano Energy,2016,25,128-135.
    [21]G.Gao,Y.Jiao,E.R.Waclawik,A.Du,J.Am.Chem.Soc.,2016,138,6292-6297.
    [22]Y.Shiraishi,Y.Kofuji,S.Kanazawa,H.Sakamoto,S.Ichikawa,S.Tanaka,T.Hirai,Chem Commun.,2014,50,15255-15258.
    [23]Y.Li,Y.T.Gong,X.Xu,P.F.Zhang,H.R.Li,Y.Wang,Catal.Commun.,2012,28,9-12.
    [24]Y.Fu,T.Huang,L.Zhang,J.Zhu,X.Wang,Nanoscale,2015,7,13723-13733.
    [25]J.Jin,Q.Liang,C.Y.Ding,Z.Y.Li,S.Xu,J.Alloys Compd.,2017,691,763-771.
    [26]H.L.Li,Y.Gao,Z.Xiong,C.Liao,K.Shih,Appl.Surf.Sci.,2018,439,552-559.
    [27]C.C.Han,Y.Q.Gao,S.Liu,L.Ge,N.Xiao,D.S.Dai,B.R.Xu,C.F.Chen,Int.J.Hydrogen Energy,2017,42,22765-22775.
    [28]C.C.Han,Y.Lu,J.L.Zhang,L.Ge,Y.J.Li,C.F.Chen,Y.J.Xin,L.E.Wu,S.M.Fang,J.Mater.Chem.A,2015,3,23274-23282.
    [29]X.Z.Yue,S.S.Yi,R.W.Wang,Z.T.Zhang,S.L.Qiu,Appl.Catal.B,2018,224,17-26.
    [30]Z.H.Xu,M.G.Kibria,B.Al Otaibi,P.N.Duchesne,L.V.Besteiro,Y.Gao,Q.Z.Zhang,Z.T.Mi,P.Zhang,A.O.Govorov,L.Q.Mai,M.Chaker,D.L.Ma,Appl.Catal.B,2018,221,77-85.
    [31]Y.Zhu,A.Marianov,H.Xu,C.Lang,Y.Jiang,ACS Appl.Mater.Interfaces,2018,10,9468-9477.
    [32]J.J.Ding,X.Y.Li,L.Chen,X.Zhang,X.Y.Tian,Appl.Catal.B,2018,224,322-329.
    [33]J.L.Shi,Chem.Rev.,2013,113,2139-2181.
    [34]X.W.Liu,D.S.Wang,Y.D.Li,Nano Today,2012,7,448-466.
    [35]R.C.Shen,J.Xie,H.D.Zhang,A.P.Zhang,X.B.Chen,X.Li,ACS Sustain Chem.Eng.,2017,6,816-826.
    [36]H.Y.Qian,S.W.Chen,Y.S.Fu,X.Wang,J.Power Sources,2015,300,41-48.
    [37]C.C.Han,L.E.Wu,L.Ge,Y.J.Li,Z.Zhao,Carbon,2015,92,31-40.
    [38]C.W.Yang,J.Q.Qin,Z.Xue,M.Z.Ma,X.Y.Zhang,R.Q.Liu,Nano Energy,2017,41,1-9.
    [39]B.J.Ng,L.K.Putri,X.Y.Kong,K.P.Y.Shak,P.Pasbakhsh,S.P.Chai,A.R.Mohamed,Appl.Catal.B,2018,224,360-367.
    [40]G.Liu,T.Wang,H.Zhang,X.Meng,D.Hao,K.Chang,P.Li,T.Kako,J.Ye,Angew.Chem.Int.Ed.,2015,54,13561-13565.
    [41]I.Majeed,U.Manzoor,F.K.Kanodarwala,M.A.Nadeem,E.Hussain,H.Ali,A.Badshah,J.A.Stride,M.A.Nadeem,Catal.Sci.Technol.,2018,8,1183-1193.
    [42]C.Z.Sun,H.Zhang,H.Liu,X.X.Zheng,W.X.Zou,L.Dong,L.Qi,Appl.Catal.B,2018,235,66-74.
    [43]X.Li,W.Bi,L.Zhang,S.Tao,W.Chu,Q.Zhang,Y.Luo,C.Wu,Y.Xie,Adv.Mater.,2016,28,2427-2431.
    [44]B.Yue,Q.Li,H.Iwai,T.Kako,J.Ye,Sci.Technol.Adv.Mater.,2011,12,034401.
    [45]Y.Zhang,D.A.J.M.Ligthart,X.Y.Quek,L.Gao,E.J.M.Hensen,Int.J.Hydrogen Energy,2014,39,11537-11546.
    [46]F.Chen,H.Yang,W.Luo,P.Wang,H.G.Yu,Chin.J.Catal.,2017,38,1990-1998.
    [47]Z.Mo,H.Xu,Z.G.Chen,X.She,Y.H.Song,P.C.Yan,Y.G.Xu,Y.V.Lei,S.Q.Yuan,H.M.Li,Chin.J.Catal.,2018,39,760-770.
    [48]J.P.Wang,J.K.Cong,H.Xu,J.M.Wang,H.Liu,M.Liang,J.K.Gao,Q.Q.Ni,J.M.Yao,ACS Sustain.Chem.Eng.,2017,5,10633-10639.
    [49]A.A.Ismail,S.A.Al-Sayari,D.W.Bahnemann,Catal.Today,2013,209,2-7.
    [50]M.Bowker,C.Morton,J.Kennedy,H.Bahruji,J.Greves,W.Jones,P.R.Davies,C.Brookes,P.P.Wells,N.Dimitratos,J.Catal.,2014,310,10-15.
    [51]A.Kudo,Y.Miseki,Chem.Soc.Rev.,2009,38,253-278.
    [52]M.Q.Yang,Y.J.Xu,W.Lu,K.Zeng,H.Zhu,Q.H.Xu,G.W.Ho,Nat.Commun.,2017,8,14224.
    [53]Q.Xu,B.Cheng,J.Yu,G.Liu,Carbon,2017,118,241-249.
    [54]P.Niu,L.L.Zhang,G.Liu,H.M.Cheng,Adv.Funct.Mater.,2012,22,4763-4770.
    [55]L.Bi,X.Gao,L.Zhang,D.Wang,X.Zou,T.Xie,Chem Sus Chem,2018,11,276-284.
    [56]W.L.Yu,J.X.Chen,T.T.Shang,L.F.Chen,L.Gu,T.Y.Peng,Appl.Catal.B,2017,219,693-704.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700