用户名: 密码: 验证码:
基于动网格的微波加热温度均匀性数值计算方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical calculation of temperature uniformity in microwave heating based on moving mesh
  • 作者:杨彪 ; 王世礼 ; 郭林嘉 ; 彭金辉
  • 英文作者:YANG Biao;WANG Shi-li;GUO Lin-jia;PENG Jin-hui;College of Information Engineering and Automation,Kunming University of Science and Technology;b.Key Laboratory of Unconventional Metallurgy of Ministry of Education,Kunming University of Science and Technology;
  • 关键词:微波加热 ; 热失控 ; 广义传输线 ; 动网格技术 ; 控制函数 ; 数值计算
  • 英文关键词:microwave heating;;thermal runaway;;generalized transmission line;;moving mesh technique;;control function;;numerical calculation
  • 中文刊名:KZYC
  • 英文刊名:Control and Decision
  • 机构:昆明理工大学信息工程与自动化学院;昆明理工大学非常规冶金教育部重点实验室;
  • 出版日期:2017-11-30 16:46
  • 出版单位:控制与决策
  • 年:2019
  • 期:v.34
  • 基金:云南省高校人才启动基金项目(KKSY201503006)
  • 语种:中文;
  • 页:KZYC201901014
  • 页数:8
  • CN:01
  • ISSN:21-1124/TP
  • 分类号:116-123
摘要
微波加热过程中物料内部温度的均匀性一直是研究的热点问题.针对"热失控"现象产生的机理,从微波传输线出发,根据广义传输线理论,利用传输线上电压和电流的分布关系推导出微波谐振腔内电磁场幅值与相位间的关系,在此基础上,提出一种微波加热运动状态物料的数值计算模型.该模型采用动网格技术跟踪求解域边界的变化量,分别针对求解域内部及其边界处网格移动变形给出控制函数,不仅可解决微波加热数值计算过程中由于求解域网格的移动导致的网格交叉缠绕问题,还可在满足计算精度的前提下,有效地减少网格节点移动的计算.数值计算结果表明,微波加热处于运动状态下物料的温度均匀性优于微波加热静止状态下物料的温度均匀性,且所提出的微波加热运动状态物料计算模型具有可行性和有效性.微波应用器装置加热活性炭球团的实验结果也表明,所提出的方法能有效抑制微波加热温度的突变.
        The temperature uniformity of materials in the process of microwave heating is a hot issue. A numerical calculation of the motion state of the microwave heating material model is proposed for the mechanism for "thermal runaway"phenomenon, based on the facts that the relationship between the resonant cavity of microwave electromagnetic field amplitude and phase are derived from the microwave transmission line and the generalized transmission line theory,and the relationship between the distribution of transmission line voltage and current. The change of dynamic mesh boundary tracking solution is used in this model, the control function for internal domain and boundary grid movement and deformation is proposed, which not only can solve the problem of the grid cross winding solving domain in mobile grid resulted from numerical calculation of heating process, but also can reduce effectively calculation of the mesh mobile node under meeting the calculation accuracy. The numerical results show that the temperature uniform of the motion state of the material is better than that of the static state of the material using microwave heating, and that verify the feasibility and effectiveness of the proposed numerical calculation model. The experimental results show that the proposed method can inhibit the mutations of the microwave heating temperature.
引文
[1]黄卡玛,卢波.微波加热化学反应中热失控条件的定量研究[J].中国科学(E辑:科学技术), 2009, 39(2):266-271.(Huang K M, Lu B. Out of control conditions of thermal microwave heating in chemical reaction set quantitative research[J]. Chinese Science(E:Science andTechnology), 2009, 39(2):266-271.)
    [2] Feng X, Sun J, Ouyang M, et al. Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module[J]. J of Power Sources, 2015, 275:261-273.
    [3] Spinner N S, Field C R, Hammond M H, et al. Physical and chemical analysis of lithium-ion battery cell-to-cell failure events inside custom fire chamber[J]. J of Power Sources, 2015, 279:713-721.
    [4] Ayappa K G. Modelling transport processes during microwave heating:A review[J]. Reviews in Chemical Engineering, 1997, 13(2):1-69.
    [5] Chatterjee A, Basak T, Ayappa K G. Analysis of microwave sintering of ceramics[J]. Aiche J, 1998,44(10):2302-2311.
    [6] Kriegsmann G A. Thermal runaway in microwave heated ceramics:A onedimensional model[J]. J of Applied Physics, 1992, 71(4):1960-1966.
    [7] Yang B, Liang G A, Peng J H, et al. Self-adaptive PID controller of microwave drying rotary device tuning on-line by genetic algorithms[J]. J of Central South University, 2013, 20(10):2685-2692.
    [8] Lopez E, Nigro N, Storti M, et al. A minimal element distortion strategy for computational mesh dynamics[J].Int J for Numerical Methods in Engineering, 2007, 69(9):1898-1929.
    [9] Ghatage S V, Khan M S, Peng Z, et al. Settling/rising of a foreign particle in solid-liquid fluidizedbeds:Application of dynamic mesh technique[J]. Chemical Engineering Science, 2017, 170:139-153.
    [10] Yang D. Investigation of the excess pore water pressure inside compacted asphalt mixture by dynamic triaxial tests[J]. Construction Building Materials, 2017, 138:363-371.
    [11]蔡显新,王文凯,蒋燕英,等.一种有效的网格自适应方法[J].计算力学学报, 2007, 24(2):241-245.(Cai X X, Wang W K, Jiang Y Y, et al. An efficient mesh adaptive method[J]. J of Computational Mechanics, 2007,24(2):241-245.)
    [12] Liang X, Min X U, Jie L I, et al. Flutter and dynamic analysis based on CFD/CSD coupling method[J]. J of Vibration Shock, 2012, 31(3):106-110.
    [13] Keye S. Fluid-structure coupled analysis of a transport aircraft and flight-test validation[J]. J of Aircraft, 2011,48(2):381-390.
    [14]傅德彬,姜毅.用动网格方法模拟导弹发射过程中的燃气射流流场[J].宇航学报, 2007, 28(2):423-426.(Fu D B, Jiang Y. Simulation of the flow field of a gas jet during the launching of a missile by moving mesh method[J]. J of Astronautics, 2007, 28(2):423-426.)
    [15] Soto O A, Baum J D, Lohner R. Inter-element stabilization for linear large-deformation elements to solve coupled CFD/CSD blast and Impact problems[C].54th Aiaa/asme/asce/ahs/asc Structures, Structural Dynamics, and Materials Conf. Boston:American Institute of Aeronautics and Astronautics Inc, 2013:240-241.
    [16]顾继慧.微波技术[M].第1版.北京:科学出版社,2004:108-126.(Gu J H. Microwave technology[M]. 1st ed. Beijing:Science Press, 2004:108-126.)
    [17] Saltiel C, Datta A K. Heat and mass transfer in microwave processing[J]. Advances in Heat Transfer, 1999, 82(4):1-94.
    [18] Zhang W, Gao C, Ye Z. Research progress on mesh deformation method in computational aeroelasticity[J].Acta Aeronautica Et Astronautica Sinica, 2014, 35(2):303-319.
    [19] Xie L, Xu M, Zhang B, et al. Space points reduction in grid deforming method based on radial basis functions[J].J of Vibration Shock, 2013, 32(10):141-145.
    [20] Schuster D M, Liu D D, Huttsell L J. Computational aeroelasticity:Success, progress, challenge[J]. J of Aircraft, 2003, 40(5):843-856.
    [21] Lopez E, Nigro N, Storti M, et al. A minimal element distortion strategy for computational mesh dynamics[J].Int J for Numerical Methods in Engineering, 2007, 69(9):1898-1929.
    [22] Guojun Liao, Dale Anderson. A new approach to grid generation[J]. Applicable Analysis, 2007, 44(3):285-298.
    [23] Tukovic Z, Jasak H. A moving mesh finite volume interface tracking method for surface tension dominated interfacial fluid flow[J]. Computers&Fluids, 2012, 55:70-84.
    [24] Wan D, Turek S. Fictitious boundary and moving mesh methods for the numerical simulation of rigid particulate flows[J]. J of Computational Physics, 2007, 222(1):28-56.
    [25] Mairabito C, Nareyanan A, Perez D, et al. Femlab model of a couple electromagnetic-thernal boundary value Problem[R]. Pittsburgh:Carnegie Mellon University,2006:1-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700