用户名: 密码: 验证码:
渗透汽化膜传递机理分子动力学模拟研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Progress on molecular dynamics simulation of transfer mechanism in pervaporation membranes
  • 作者:邹修洋 ; 王杰 ; 李梅生 ; 周守勇 ; 赵宜江 ; 钟璟
  • 英文作者:ZOU Xiuyang;WANG Jie;LI Meisheng;ZHOU Shouyong;ZHAO Yijiang;ZHONG Jing;College of Chemistry and Chemical Engineering,Changzhou University,Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology;School of Chemistry and Chemical Engineering,Huaiyin Normal University,Jiangsu Engineering Laboratory for Environment Functional Materials;
  • 关键词:分子动力学模拟 ; 渗透汽化 ; 传递机理
  • 英文关键词:molecular dynamic simulation;;pervaporation;;transfer mechanism
  • 中文刊名:MKXY
  • 英文刊名:Membrane Science and Technology
  • 机构:常州大学石油化工学院;淮阴师范学院化学化工学院江苏省环境功能材料工程实验室;
  • 出版日期:2019-02-25
  • 出版单位:膜科学与技术
  • 年:2019
  • 期:v.39;No.194
  • 基金:国家自然科学基金(21878118,21476094);; 江苏省自然科学基金(BK20171268);; 江苏省高校自然科学基金重点项目(18KJA530003);; 江苏省高校“青蓝工程”资助项目
  • 语种:中文;
  • 页:MKXY201901028
  • 页数:7
  • CN:01
  • ISSN:62-1049/TB
  • 分类号:140-146
摘要
叙述了近年来分子动力学模拟应用于渗透汽化膜传递机理研究的进展,包括膜层中分子吸附-扩散、热力学分析、吸附自由能和水传输机理等;模拟过程提供了分子层面的渗透汽化过程,可以了解溶剂分子的优先吸附位点、膜材料溶胀或拉伸强度等特点,从而可应用于预筛选膜材料,设计膜孔径、膜厚、亲疏水性等物化特性.另外,提出了目前分子动力学模拟在渗透汽化膜研究中所存在的问题,包括模拟时间和空间尺度与实际尺度的不匹配、分子模型与实际晶型的不匹配、力场参数的合理性等.
        The molecular dynamics simulation progress on the mass transfer mechanisms of pervaporation(PV) membranes in recent years was reviewed, including molecule adsorption and diffusion behaviors in membranes, thermodynamic analysis,adsorption free energy, water transport mechanism,etc. The simulation process provides a detailed behavior for pervaporation processes at a molecular level. The preferential adsorption sites of solvent molecules, the swelling or tensile strength of the membranes can be understood, thereby preselecting membrane materials and designing pore size, hydrophobicity, thickness of membranes. On the other hand, the problems of molecular dynamics simulation studies are discussed, including the mismatching of time and space scales between simulation and actual process, the mismatching between molecular models and actual crystalline forms, the rationality of force field parameters, etc.
引文
[1] 刘德飞. 金属 - 有机骨架材料的吸附与膜分离机理研究[D]. 广州: 华南理工大学, 2013.
    [2] 单厚超. 有机分子在渗透汽化膜中溶解扩散过程的实验及模拟研究[D]. 北京: 北京化工大学, 2017.
    [3] Zhang C, Peng L, Jiang J, et al. Mass transfer model, preparation and applications of zeolite membranes for pervaporation dehydration: A review[J]. Chin J Chem Eng, 2017, 25(11): 1627-1638.
    [4] 陈正隆, 徐为人, 汤立达. 分子模拟的理论与实践[M]//北京: 化学工业出版社, 2007: 117.
    [5] 苑世领, 张恒, 张冬菊. 分子模拟 - 理论与实践[M]//北京: 化学工业出版社, 2016: 89.
    [6] Muscatello J, Jaeger F, Matar O K, et al. Optimizing water transport through graphene-based membranes: insights from nonequilibrium molecular dynamics[J]. ACS Appl Mater Interfaces, 2016, 8(19):12330-12336.
    [7] 王敏敏. PEBA膜扩散特性的分子动力学模拟及PEBA/MCM-41杂化膜分离苯酚/水的渗透汽化性能研究[D]. 太原: 太原理工大学, 2015.
    [8] 刘捷. 蛋白质在自组装膜表面吸附的分子模拟研究[D]. 广州: 华南理工大学, 2015.
    [9] 丁川. 渗透汽化 - 两级冷凝回收高纯度糠醛及吸附扩散行为的分子动力学模拟研究[D]. 太原: 太原理工大学, 2016.
    [10] Pan F, Peng F, Lu L, et al. Molecular simulation on penetrants diffusion at the interface region of organic-inorganic hybrid membranes[J]. Chem Eng Sci, 2008, 63(4): 1072-1080.
    [11] Zhu J, Hou J, Uliana A, et al. The rapid emergence of two-dimensional nanomaterials in high-performance separation membranes[J]. J Mater Chem A, 2018, 6(9): 3773-3792.
    [12] Zhang Q G, Liu Q L, Huang S P, et al. Microstructure-related performances of poly(vinyl alcohol)-silica hybrid membranes: a molecular dynamics simulation study[J]. J Mater Chem, 2012, 22(21): 10860-10866.
    [13] Tan H, Wu Y, Zhou Y, et al. Pervaporative recovery of n-butanol from aqueous solutions with MCM - 41 filled PEBA mixed matrix membrane[J]. J Membr Sci, 2014, 453: 302-311.
    [14] Moulik S, Kumar K P, Bohra S, et al. Pervaporation performance of PPO membranes in dehydration of highly hazardous mmh and udmh liquid propellants[J]. J Hazard Mater, 2015, 288: 69-79.
    [15] 夏玉萍.等离子体制备芳烃/烷烃渗透汽化分离复合膜[D].大连: 大连理工大学, 2016.
    [16] Yu T, Xu Z, Liu S, et al. Enhanced hydrophilicity and water-permeating of functionalized graphene-oxide nanopores: Molecular dynamics simulations[J]. J Membr Sci, 2018, 550: 510-517.
    [17] Zhang K, Lively R P, Noel J D, et al. Adsorption of water and ethanol in MFI - type zeolites[J]. Langmuir, 2012, 28(23): 8664-8673.
    [18] Trzpit M, Soulard M, Patarin J, et al. The effect of local defects on water adsorption in silicalite-1 zeolite: A joint experimental and molecular simulation study[J]. Langmuir, 2007, 23(20): 10131-10139.
    [19] Guo S,Yu C,Gu X,et al. Simulation of adsorption,diffusion, and permeability of water and ethanol in NaA zeolite membranes[J].J Membr Sci,2011,376(1/2): 40-49.
    [20] Jalali A M, Shariatinia Z, Taromi F A. Desulfurization efficiency of polydimethylsiloxane/silica nanoparticle nanocomposite membranes: MD simulations[J]. Comp Mater Sci, 2017, 139: 115-124.
    [21] Kao S, Huang Y, Liao K, et al. Applications of positron annihilation spectroscopy and molecular dynamics simulation to aromatic polyamide pervaporation membranes[J]. J Membr Sci, 2010, 348(1/2): 117-123.
    [22] Heinz H, Vaia R A, Farmer B L, et al. Accurate simulation of surfaces and interfaces of face-centered cubic metals using 12-6 and 9-6 Lennard-jones potentials[J]. J Phys Chem C, 2008, 112(44): 17281-17290.
    [23] Heinz H, Vaia R A, Farmer B L. Interaction energy and surface reconstruction between sheets of layered silicates[J]. J Chem Phys, 2006, 124(22): 48.
    [24] Sun T, Fang M, Wu Z, et al. Molecular dynamics insights into the structural and diffusive properties of ZIF - 8/PDMS mixed matrix membranes in the n-butanol/water pervaporation process[J]. Modell Simul Mater Sci Eng, 2017, 25(3): 035002.
    [25] Ma J, Zhang M, Wu H, et al. Mussel-inspired fabrication of structurally stable chitosan/polyacrylonitrile composite membrane for pervaporation dehydration[J]. J Membr Sci, 2010, 348(1/2): 150-159.
    [26] Gao B, Jiang Z, Zhao M, et al. Enhanced dehydration performance of hybrid membranes by incorporating lanthanide-based MOFs[J]. J Membr Sci, 2018, 546: 31-40.
    [27] 代正伟 .聚丙烯分离膜的亲水化:分子模拟与实验研究[D]. 杭州: 浙江大学, 2010.
    [28] Wang Y, Chung T S, Wang H, et al. Butanol isomer separation using polyamide-imide/CD mixed matrix membranes via pervaporation[J]. Chem Eng Sci, 2009, 64(24): 5198-5209.
    [29] Evans J D, Jelfs K E, Day G M, et al. Application of computational methods to the design and characterisation of porous molecular materials[J]. Chem Soc Rev, 2017, 46(11): 3286-3301.
    [30] Wang Y, Li L, Wei Y, et al. Water transport with ultralow friction through partially exfoliated g - C3N4 nanosheet membranes with self-supporting spacers[J]. Angew Chem Int Ed, 2017, 56(31): 8974-8980.
    [31] Ning W, Peng X, Xu Z. Understanding Water Permeation in Graphene Oxide Membranes[J]. Acs Appl Mater Interface, 2014, 6(8): 5877-5883.
    [32] Muscatello J, Jaeger F, Matar O K, et al. Optimizing water transport through graphene-based membranes: Insights from nonequilibrium molecular dynamics[J]. ACS Appl Mater Inter, 2016, 8(19): 12330-12336.
    [33] Zheng S, Tu Q, Urban J J, et al. Swelling of graphene oxide membranes in aqueous solution: Characterization of interlayer spacing and insight into water transport mechanisms[J]. ACS Nano, 2017, 11(6): 6440-6450.
    [34] Suk M E, Aluru N R. Water transport through ultrathin graphene[J]. J Phys Chem Lett, 2015, 1(10): 1590-1594.
    [35] Pan F, Peng F, Jiang Z. Diffusion behavior of benzene/cyclohexane molecules in poly(vinyl alcohol)-graphite hybrid membranes by molecular dynamics simulation[J]. Chem Eng Sci, 2007, 62(3): 703-710.
    [36] Zhao J, Ma J, Chen J, et al. Experimental and molecular simulation investigations on interfacial characteristics of gelatin/polyacrylonitrile composite pervaporation membrane[J]. Chem Eng J, 2011, 178: 1-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700