用户名: 密码: 验证码:
基于Bodner-Partom模型的水泥乳化沥青混合料黏弹塑压实特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Viscoelastoplastic Compaction Properties of Cement-emulsified Asphalt Mixture Based on Bodner-Partom Model
  • 作者:张翠红 ; 曹学鹏 ; 焦生杰 ; 徐信芯 ; 职统超 ; 付耀
  • 英文作者:ZHANG Cui-hong;CAO Xue-peng;JIAO Sheng-jie;XU Xin-xin;ZHI Tong-chao;FU Yao;School of Mechanical Engineering, Xi'an Shiyou University;Highway Maintenance Equipment National Engineering Laboratory, Chang'an University;Henan Gaoyuan Maintenance Technology of Highway Co.Ltd.;
  • 关键词:道路工程 ; 水泥乳化沥青混合料 ; 压缩试验 ; 黏弹塑性 ; B-P本构模型
  • 英文关键词:road engineering;;cement-emulsified asphalt mixture;;compaction test;;viscoelastoplasticity;;B-P constitutive model
  • 中文刊名:ZGGL
  • 英文刊名:China Journal of Highway and Transport
  • 机构:西安石油大学机械工程学院;长安大学公路养护装备国家工程实验室;河南高远公路养护技术有限公司;
  • 出版日期:2019-07-15
  • 出版单位:中国公路学报
  • 年:2019
  • 期:v.32;No.191
  • 基金:国家科技支撑计划项目(2015BAF07B08);; 国家自然科学基金项目(51805041);; 陕西省自然科学基础研究计划项目(2019JM-295);; 中央高校基本科研业务费专项资金项目(300102258502)
  • 语种:中文;
  • 页:ZGGL201907006
  • 页数:8
  • CN:07
  • ISSN:61-1313/U
  • 分类号:45-52
摘要
为揭示水泥乳化沥青混合料压实过程中的黏弹塑性变形特性及其变形机理,结合现场路面压路机的施工工艺参数,采用万能试验机压缩试验模拟该混合料的压实过程。针对试验循环荷载力学响应曲线变形特征,引入有效平均应力构建混合料压实变形的Bodner-Partom本构模型。通过对应变-时间的非线性拟合识别出该混合料的B-P模型参数值,进而揭示压实过程中混合料的黏弹塑性动态流变特性及变形机理。试验结果表明:压缩试验可充分反映混合料压实过程中的力学响应变形特性;随着循环荷载次数的增加,混合料塑性和黏塑性变形减小而弹性和黏弹性变形增大。据混合料复压阶段的黏塑性变形规律导出试样空隙率的计算式,进而获得有效平均应力随试样空隙率的变化规律。B-P本构模型分析结果表明:黏性参数η随荷载作用次数的增加而逐渐增大,说明混合料在压实过程中黏性增强;应变率敏感系数n_1基本保持不变,表明压实过程中混合料温度相对稳定;参数值Z,D_0随荷载作用次数的增加分别呈递增、递减的规律,前者显示随着混合料被进一步压实其非弹性变形抵抗力增大,进而导致塑性和黏塑性应变逐渐减小,后者显示塑性应变率减小,表明单次循环荷载下塑性变形占总变形量的比例逐渐减小。B-P模型参数值可准确表征水泥乳化沥青混合料与时间和荷载相关的黏弹塑性流变特性,重构后的B-P本构模型可有效揭示混合料压实过程中的黏弹塑性变形机理,可为深入研究其压实流变性能和路面压实工艺奠定基础。
        In order to reveal the viscoelastoplastic deformation properties and mechanism of cement-emulsified asphalt mixture, universal testing machine compaction test was employed to simulate the compaction process in combination with the construction process parameters of the pavement roller. According to the deformation characteristics of mechanical response curve under loading cycles, the effective mean stress was introduced into the Bodner-Partom(B-P) model to construct a compaction deformation constitutive model of the mixture. Through nonlinear fitting analyses of the strain-time data, the parameter values of the constitutive model in the process of load cycles were identified, and furthermore, the viscoelastoplastic rheological properties and dynamic deformation mechanism in the compaction process of the mixture were revealed. The results show that the universal testing machine compression test fully reflects the deformation characteristics of the mixture. With the increase of loading cycles, plasticity and viscoplasticity deformation of the mixture decreases, and elastic and viscoelastic deformation of the mixture increases. According to viscoplastic deformation rule of the mixture, the expression for calculation of the void fraction in the compaction process is derived, deducing the changing rule of effective mean stress with the void fraction. The changing rules of B-P model parameters are listed as follows. Viscosity coefficient η increases with the increase of the load times and indicates that viscous property of the mixture increases after further compaction process. Strain rate sensitivity coefficient n_1 remains the same and demonstrates that mixture temperature in the compaction process is relatively constant. Internal validity Z and stress limit D_0 show an increasing and decreasing trend, respectively, with an increase in the load times. The former indicates that the inelastic deformation resistance increases, and plasticity and viscoplasticity deformation decrease with further compaction. The latter implies that the plastic strain rate decreases and plastic deformation proportion of the total deformation decrease gradually under a single cyclic loading. In conclusion, the B-P model parameters accurately describe viscoelastoplastic rheological properties of the mixture, which are associated with time and loading cycles. It can be verified that the reconstructed B-P constitutive model can effectively reveal viscoelastoplastic deformation mechanism in the compaction process. This can provide a theoretical foundation for further research on compaction rheological performance and pavement compaction techniques of the mixture.
引文
[1] 陈骁.热态沥青混合料压实过程变形特性研究[D].长沙:长沙理工大学,2006.CHEN Xiao.Research on Deformation Characteristic of the HMA Compacting [D].Changsha:Changsha University of Science & Technology,2006.
    [2] 陈骁,应荣华,郑健龙,等.基于MTS压缩试验的热态沥青混合料黏弹塑性模型[J].中国公路学报,2007,20(6):25-30.CHEN Xiao,YING Rong-hua,ZHENG Jian-long,et al.Viscoelastic-plasticity Model of Hot Asphalt Mixtures Based on MTS Compaction Test [J].China Journal of Highway and Transport,2007,20 (6):25-30.
    [3] FU Jun,SHI Zhi-meng,DAI Da-rong,et al.Microstructure Analysis for Emulsified Asphalt Cement Concrete [J].Advanced Materials Research,2013,818:20-23.
    [4] 石妍,彭尚仕,闫小虎,等.水泥乳化沥青混凝土细观损伤及微观性能[J].建筑材料学报,2014,17(1):177-181,186.SHI Yan,PENG Shang-shi,YAN Xiao-hu,et al.Meso-damage and Micro-properties of Cement Emulsified Asphalt Concrete [J].Journal of Building Materials,2014,17 (1):177-181,186.
    [5] RUTHERFORD T,WANG Z,SHU X,et al.Laboratory Investigation into Mechanical Properties of Cement Emulsified Asphalt Mortar [J].Construction & Building Materials,2014,65 (13):76-83.
    [6] 李江.乳化沥青混凝土强度形成机理研究[J].石油沥青,2017,31(2):28-32.LI Jiang.Research on Strength Formation Mechanism of Emulsified Asphalt Concrete [J].Petroleum Asphalt,2017,31 (2):28-32.
    [7] 刘轶凡.施工压实阶段热拌沥青混合料的粘弹塑性流变模型研究[D].长沙:长沙理工大学,2006.LIU Yi-fan.Visco-elastic-plasticity Model Research on Hot Asphalt Mix During the Field Compaction Stage [D].Changsha:Changsha University of Science & Technology,2006.
    [8] 郑健龙,陈骁,钱国平.松散热态沥青混合料压实力学响应及其粘弹塑性模型参数分析[J].工程力学,2010,27(1):33-40.ZHENG Jian-long,CHEN Xiao,QIAN Guo-ping.Compaction Mechanical Response and Analysis of Viscoelastoplasticity Model Parameter for Loose Hot Asphalt Mixture [J].Engineering Mechanics,2010,27 (1):33-40.
    [9] AIREY G D,RAHIMZADEH B,COLLOP A C.Viscoelastic Linearity Limits for Bituminous Materials [J].Materials and Structures,2003,36 (10):643-647.
    [10] TEJASWI P,FATIMA J,PADMAREKHA A,et al.Linear Viscoelastic Limits for Determination of Dynamic Modulus of Bituminous Concrete Mixture in AMPT [C] // ALQADI I L,MURRELL S.Proceedings of the 2013 Airfield and Highway Pavement Conference.Reston:ASCE,2013:1100-1111.
    [11] BENEDETTO H D,YAN X L.Comportement Mecanique des Enrobes Bitumineux et Modelisation de la Contrainte Maximale [J].Materials and Structures,1994,27 (173):539-547.
    [12] DARABI M K,AL-RUB R K A,MASAD E A,et al.Cyclic Hardening-relaxation Viscoplasticity Model for Asphalt Concrete Materials [J].Journal of Engineering Mechanics,2013,139 (7):832-847.
    [13] ZHU Hao-ran,SUN Lu.A Viscoelastic-viscoplastic Damage Constitutive Model for Asphalt Mixtures Based on Thermodynamics [J].International Journal of Plasticity,2013,40:81-100.
    [14] LUO X,LUO R M,ASCE P E,et al.Characterization of Asphalt Mixtures Using Controlled-strain Repeated Direct Tension Test [J].Journal of Materials in Civil Engineering,2013,25 (2):194-207.
    [15] CHENG Jian-lian,QIAN Xu-dong,ZHAO Tie-shuan.Rheological Viscoplastic Models of Asphalt Concrete and Rate-dependent Numerical Implement [J].International Journal of Plasticity,2016,81:209-230.
    [16] YANG Ping.Rutting Deformations Analysis for Asphalt Pavement Base on the Visco-elastoplastic Theory [J].Advanced Materials Research,2014,838-841:1227-1233.
    [17] 张丽娟,张肖宁,陈页开.沥青混合料变形的粘弹塑性本构模型研究[J].武汉理工大学学报:交通科学与工程版,2011,35(2):289-292.ZHANG Li-juan,ZHANG Xiao-ning,CHEN Ye-kai.The Research of Visco-elasto-plastic Constitutive Model on the Deformation of Asphalt Mixture [J].Journal of Wuhan University of Technology:Transportation Science & Engineering,2011,35 (2):289-292.
    [18] SAADEH S A.Characterization of Asphalt Concrete Using Anisotropic Damage Viscoelastic-viscoplastic Model [D].College Station:Texas A & M University,2005.
    [19] 石多奇,杨晓光,王延荣,等.Udimet 720 Li材料B-P型粘塑性本构建模研究[J].北京航空航天大学学报,2003,29(7):627-630.SHI Duo-qi,YANG Xiao-guang,WANG Yan-rong,et al.B-P Viscoplastic Constitutive Modeling of Udimet 720 Li [J].Journal of Beijing University of Aeronautics and Astronautics,2003,29 (7):627-630.
    [20] 宋迎东,高德平.采用Bodner-Partom本构模型的粘塑性有限元应力分析方法研究[J].机械科学与技术,2004,23 (10):1208-1211.SONG Ying-dong,GAO De-ping.Visco-plastic Finite Element Method for Stress Analysis with Bodner-Partom Constitutive Equations [J].Mechanical Science and Technology,2004,23 (10):1208-1211.
    [21] 张翠红,焦生杰,曹学鹏,等.水泥乳化沥青混合料施工和易性评价方法及影响因素[J].长安大学学报:自然科学版,2018,40(1):41-48.ZHANG Cui-hong,JIAO Sheng-jie,CAO Xue-peng,et al.Evaluation Method and Influencing Factors for Construction Workability of Cement-emulsified Asphalt Mixture [J].Journal of Chang'an University:Natural Science Edition,2018,40 (1):41-48.
    [22] 齐彦秋,焦生杰,闫玉奎,等.MOH材料碾压时机的实验室研究[J].筑路机械与施工机械化,2017,34(3):39-42.QI Yan-qiu,JIAO Sheng-jie,YAN Yu-kui,et al.Laboratory Research on Rolling Compaction Time of MOH Material [J].Road Machinery & Construction Mechanization,2017,34 (3):39-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700