用户名: 密码: 验证码:
新生儿窒息肾脏损害的临床研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Clinical analysis of kidney damage after neonatal asphyxia
  • 作者:刘淑芳 ; 虞人杰 ; 王俊怡
  • 英文作者:LIU Shufang;YU Renjie;WANG Junyi;Department of Pediatrics,First Hospital of Tsinghua University;
  • 关键词:新生儿窒息 ; 肾脏损害 ; 肾血流 ; 尿酶 ; 诊断依据
  • 英文关键词:neonatal asphyxia;;kidney damage;;renal blood flow;;urease;;diagnosis criteria
  • 中文刊名:SXYX
  • 英文刊名:Journal of Shanxi Medical University
  • 机构:清华大学第一附属医院儿科;
  • 出版日期:2019-06-24 15:25
  • 出版单位:山西医科大学学报
  • 年:2019
  • 期:v.50;No.320
  • 基金:清华大学自主科研计划项目(2011THZ0)
  • 语种:中文;
  • 页:SXYX201906026
  • 页数:5
  • CN:06
  • ISSN:14-1216/R
  • 分类号:139-143
摘要
目的通过新生儿窒息肾脏损害的临床表现、肾功能、尿酶测定、肾血流超声检测进一步探讨新生儿窒息肾脏损害的诊断。方法选择2016-01-01~2017-06-30在清华大学第一附属医院新生儿重症监护病房(NICU)住院的新生儿窒息患儿,胎龄> 37周、出生体质量> 2 500 g的患儿共111例,每例患儿出生后均进行脐动脉血气分析。采用Apgar评分诊断新生儿窒息。根据脐动脉血气将重度窒息组再分别分为严重酸中毒组(p H≤7和或碱剩余≤-12 mmol/L)、非严重酸中毒组(p H> 7. 0和或碱剩余>-12 mmol)。根据缺氧病史、临床表现、肾功能及尿酶诊断新生儿窒息肾脏损害。比较轻度窒息组(n=74)、重度窒息组(n=37)中肾脏损害发生率、肾脏损害相关的临床表现及肾功能、血、尿β_2微球蛋白(β_2M)及尿-N乙酰-β-D-氨基葡萄糖苷酶(NAG)和尿β-D-半乳糖苷酶(GAL)。结果①新生儿窒息肾脏损害的发生率为35. 13%(39/111)。重度窒息组肾脏损害的比例高于轻度窒息组(51. 39%vs 27. 03%),差异有统计学意义(χ~2=6. 404,P=0. 011)。②重度窒息组中严重酸中毒的肌酐、尿素氮明显高于非严重酸中毒组和轻度窒息组(均P <0. 05)。出生后7 d,三组肌酐与尿素氮均明显改善,但重度窒息合并严重酸中毒组中Cr和BUN水平仍高于其他两组,差异有统计学意义。③出生后48 h,重度窒息组中严重酸中毒的血、尿β_2微球蛋白明显高于非严重酸中毒组和轻度窒息组(均P <0. 05)。④出生后48 h,轻度窒息组、重度窒息中严重酸中毒组与非严重酸中毒组相比,尿NAG和尿GAL均有升高趋势,但差异无统计学意义(均P> 0. 05)。⑤肾血流超声检查显示,重度窒息组中严重酸中毒组的左肾收缩期峰值血流高于非严重酸中毒组、轻度窒息组及对照组(P=0. 003),但其余指标组间比较差异无统计学意义。结论新生儿窒息可发生肾脏损害。结合脐血p H值可判断窒息严重程度,合并严重酸中毒的患儿肾脏损害更严重。
        Objective To investigate the early diagnosis of kidney injury after neonatal asphyxia based on the clinical manifestations of renal function,urease assay,and renal blood flow ultrasonic testing. Methods From January 1,2016 to June 30,2017,111 cases of neonatal asphyxia in the Neonatal Intensive Care Unit of Pediatrics of the First Hospital of Tsinghua University,with a gestational age> 37 weeks and a birth weight > 2 500 g,were enrolled. Apgar scores were used to diagnose neonatal asphyxia. According to the umbilical arterial blood gas analysis,severe asphyxia was divided into two groups: severe asphyxia with severe acidosis group( pH≤7 and/or BE≤-12 mmol/L),and severe asphyxia without acidosis group( pH > 7. 0 and/or BE >-12 mmol/L). Kidney damage after neonatal asphyxia was diagnosed according to the hypoxia history,clinical presentation,renal function,urease enzymes and renal blood flow with Doppler ultrasonography. The incidence of kidney damage,clinical manifestations associated with kidney damage,renal function,blood and urine β_2-microglobulin( β_2 M),urine-N-acetyl-β-D-glucosaminidase( NAG) and urine β-D-galactosidase( GAL) were compared between mild asphyxia( n = 74) and severe asphyxia( n = 37). One-way ANOVA,the LSD test,Kruskal-Wallis test for independent samples,Chi square test and Fisher's exact test were used for statistical analysis. Results ①The incidence of kidney damage after asphyxia was 35. 13%( 39/111). It was higher in severe asphyxia group than in mild asphyxia group( 51. 39% vs 27. 03%,χ~2= 6. 404,P = 0. 011). ②The levels of creatinine,urea nitrogen were higher in severe asphyxia with severe acidosis group than in severe asphyxia without acidosis group and mild asphyxia group( P < 0. 05). After birth for 7 d,both creatinine and urea nitrogen levels recovered significantly,but the levels of creatinine and urea nitrogen were still higher in severe asphyxia with severe acidosis group than those of the other two groups( P < 0. 05). ③At 48 h after birth,blood and urinary β_2 microglobulin were higher in severe asphyxia with severe acidosis group and mild asphyxia group than that in severe asphyxia without acidosis group( P < 0. 05). ④At 48 h after birth,urinary NAG and urinary GAL levels were higher in severe asphyxia with severe acidosis group and mild asphyxia group than that in severe asphyxia without acidosis group,but the difference was not statistically significant. ⑤The values of the peak systolics right kidney were higher in severe asphyxia with severe acidosis group than in other groups by renal blood flow with Doppler ultrasonography( P =0. 003). Conclusion Kidney damage can occur after neonatal asphyxia. Cord blood p H value should be combined to determine the severity of asphyxia. Kidney damage is more serious in the severe asphyxia with severe acidosis neonates.
引文
[1]虞人杰,李黎,汤泽中.新生儿窒息多器官损害的临床研究[J].中华儿科杂志,1997,35(3):138-141.
    [2]Perlman JM,Tack ED,Martin T,et al.Acute systemic organinjury in term infants after asphyxia[J].AJDC,1989,143(5):617-620.
    [3]中华医学会儿科学分会新生儿学组.新生儿缺氧缺血性脑病诊断标准[J].中华儿科杂志,2005,43(8):584.
    [4]刘淑芳,虞人杰,王俊怡.新生儿窒息后心肌损害的临床研究[J].中华围产医学杂志,2015,18(4):279-284.
    [5]Durkan AM,Alexander RT.Acute kidney injury post neonatal asphyxia[J].J Pediatr,2011,158:e29-33.
    [6]王丽芳,丁守领,顾圆.104例新生儿窒息致多器官损伤临床分析[J].中国现代药物应用,2010,4(17):59-61.
    [7]张秀英,胡玲,高燕勤,等.49例窒息新生儿器官功能损害的临床分析[J].医学信息,2011,24(1):91-92.
    [8]Shah P,Riphagen S,Beyene J,et al.Multiorgan dysfunction in infants with post-asphyxial hypoxic-ischaemic encephalopathy[J].Arch Dis Child Fetal Neonatal Ed,2004,89(2):F152-F155.
    [9]刘俊燕,熊涛,冯虹,等.新生儿窒息多器官功能损害的危险因素分析[J].中国当代儿科杂志,2011,12(13):940-943.
    [10]刘军霞,王会卿,张娜,等.血β-2微球蛋白与窒息新生儿肾早损相关性研究[J].海南医学院学报,2016,22(2):186-188.
    [11]Perlman JM.Intervention strategies for neonatal hypoxic-ischemic cerebral injury.[J].Clin Ther,2006,28(9):1353-1365.
    [12]Aggatwal A,Kumar P,Chowdhary G,et al.Evaluation of renal functions in asphyxiated newborns[J].J Trop Pedia,2005,51(5):295-299.
    [13]邵克忠,胡元平,陈蓓蕾,等.窒息早产儿肾功能损害的彩色多普勒超声诊断价值[J].现代实用医学,2016,28(11):1431-1433.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700