用户名: 密码: 验证码:
模拟氮沉降对湿性常绿阔叶次生林土壤碳氮组分和酶活性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Simulated Nitrogen Deposition on Soil Carbon and Nitrogen Fractions and Enzyme Activity in Moist Evergreen Broad-leaved Secondary Forest
  • 作者:孙宇 ; 彭天驰 ; 李顺 ; 周培 ; 王婷 ; 钱学诗 ; 刘枭鹏 ; 陈雨芩 ; 马豪宇 ; 李曾燕 ; 涂利华
  • 英文作者:SUN Yu;PENG Tianchi;LI Shun;ZHOU Pei;WANG Ting;QIAN Xueshi;LIU Xiaopeng;CHEN Yuqin;MA Haoyu;LI Zengyan;TU Lihua;Key Laboratory on Forest Resources Conservation and Ecological Security in the Upper Reaches of the Yangtze River, National Forestry Administration, College of Forestry, Sichuan Agricultural University;Shanxi University Affiliated High School;
  • 关键词:氮沉降 ; 次生林 ; 土壤碳组分 ; 土壤氮组分 ; 土壤酶活性
  • 英文关键词:nitrogen deposition;;secondary forest;;soil carbon fractions;;soil nitrogen fractions;;enzyme activity
  • 中文刊名:TRQS
  • 英文刊名:Journal of Soil and Water Conservation
  • 机构:四川农业大学林学院长江上游森林资源保育与生态安全国家林业局重点实验室;山西大学附属中学;
  • 出版日期:2019-04-15
  • 出版单位:水土保持学报
  • 年:2019
  • 期:v.33;No.161
  • 基金:国家自然科学基金项目(31300522);; 四川省教育厅重点项目(17ZA0310);; 四川农业大学创新训练计划项目(201710626003)
  • 语种:中文;
  • 页:TRQS201902037
  • 页数:10
  • CN:02
  • ISSN:61-1362/TV
  • 分类号:237-245+252
摘要
为了研究氮沉降对次生林土壤碳氮组分和酶活性的影响,以华西雨屏区湿性常绿阔叶次生林为对象,从2014年1月起进行野外定位模拟氮沉降试验,分别设置对照(CK,+0 g/(m~2·a))、低氮(LN,+5 g/(m~2·a))和高氮(HN,+15 g/(m~2·a))3个氮添加水平。在氮沉降进行27个月后,按照腐殖质层和淋溶层表层进行取样,测定不同土层土壤总有机碳(TOC)、可浸提溶解性有机碳(EDOC)、易氧化碳(ROC)、全氮(TN)、硝态氮(NO_3~-—N)和铵态氮(NH_4~+—N)含量以及蔗糖酶、脲酶、酸性磷酸酶和多酚氧化酶活性。结果表明:模拟氮沉降显著增加该次生林腐殖质层土壤的TOC和NH_4~+—N含量,显著增加腐殖质层和淋溶层表层土壤的NO_3~-—N含量,腐殖质层土壤C/N显著升高。淋溶层表层土壤TOC、NH_4~+—N、C/N以及2层土壤的EDOC、ROC、TN和NH_4~+—N/NO_3~-—N均无显著影响。2层土壤的多酚氧化酶活性均随着氮添加量的升高而降低,其中淋溶层表层达到显著差异。模拟氮沉降对蔗糖酶、脲酶和酸性磷酸酶活性均无显著影响。腐殖质层中,NH_4~+—N和NO_3~-—N含量与TOC含量存在极显著正相关关系。2层土壤的多酚氧化酶活性均与NO_3~-—N含量呈极显著负相关。结果说明,模拟氮沉降使该次生林中原本较高的腐殖质层土壤TOC含量进一步显著增加,并且促进土壤无机氮的积累,而模拟氮沉降对多酚氧化酶的抑制作用更加有利于土壤有机质的积累。
        In order to study the effects of nitrogen deposition on soil carbon and nitrogen fractions and enzyme activity in secondary forests, we took the moist evergreen secondary forests in rainy area of west China as the object. A simulated nitrogen deposition experiment in the field was conducted from January 2014. The addition levels of nitrogen included control(CK, +0 g/(m~2·a)), low nitrogen(LN,+5 g/(m~2·a)) and high nitrogen(HN,+15 g/(m~2·a)). After 27 months of nitrogen deposition, soil samples of the humus layer and the surface of the leaching layer were collected to measure the contents of soil total organic carbon(TOC), extractable dissolved organic carbon(EDOC), readily oxidizable carbon(ROC), total nitrogen(TN), NO_3~-—N, NH_4~+—N as well as enzyme activities of sucrase, urease, acid phosphatase and polyphenol oxidase. The results showed that simulated nitrogen deposition significantly increased contents of TOC and NH_4~+—N in the humus layer, and the contents of NO_3~-—N in the humus layer and the surface of the leaching layer, and increased significantly the value of C/N in the humus layer of the secondary forest. The contents of TOC, NH_4~+—N and C/N in the surface of the leaching layer and the contents of EDOC, ROC, TN and ammonium nitrate ratios in the two kinds of soil layers were not influenced by simulated nitrogen deposition. The polyphenol oxidase activity of the two soil layers decreased with the increasing of nitrogen addition, and the difference in surface of the leaching layer was significant. Simulated nitrogen deposition had no significant effect on the activities of invertase, urease and acid phosphatase. In the humus layer, there was a very significant positive correlation between the contents of NH_4~+—N and NO_3~-—N and the TOC. The polyphenol oxidase activities were significantly negatively correlated with the NO_3~-—N content in the two soil layers. The results showed that the simulated nitrogen deposition further increased the TOC content in the humus layer of the secondary forest, and promoted the accumulation of soil inorganic nitrogen. The inhibition of simulated nitrogen deposition on polyphenol oxidase was more conducive to the accumulation of soil organic matter.
引文
[1] Galloway J N, Townsend A R, Erisman J W, et al. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions[J].Science,2008,320(5878):889-892.
    [2] 吕超群,田汉勤,黄耀.陆地生态系统氮沉降增加的生态效应[J].植物生态学报,2007,31(2):205-218.
    [3] Dixon R K, Brown S, Houghton R A, et al. Carbon pools and flux of global forest ecosystems[J].Science,1994,263(5144):185-190.
    [4] 涂利华,胡庭兴,张健,等.模拟氮沉降对华西雨屏区苦竹林土壤有机碳和养分的影响[J].植物生态学报,2011,35(2):125-136.
    [5] Vries W D, Du E, Butterbach-Bahl K. Short and long-term impacts of nitrogen deposition on carbon sequestration by forest ecosystems[J].Current Opinion in Environmental Sustainability,2014,9/10:90-104.
    [6] Gu F, ZhangY, Tao B, et al. Modeling the effects of nitrogen deposition on carbon budget in two temperate forests[J].Ecological Complexity,2010,7(2):139-148.
    [7] 朱丽琴,黄荣珍,段洪浪,等.红壤侵蚀地不同人工恢复林对土壤总有机碳和活性有机碳的影响[J].生态学报,2017,37(1):249-257.
    [8] Yang S, Malhi S S, Li F, et al. Long-term effects of manure and fertilization on soil organic matter and quality parameters of a calcareous soil in NW China[J].Journal of Plant Nutrition and Soil Science,2010,170(2):234-243.
    [9] Aber J, Mcdowell W, Nadelhoffer K, et al. Nitrogen saturation in temperate forest ecosystems[J].Bioscience,1998,48(11):921-934.
    [10] Deforest J L, Zak D R, Pregitzer K S, et al. Atmospheric nitrate deposition, microbial community composition, and enzyme activity in northern hardwood forests[J].Soil Science Society of America Journal,2004,68(1):132-138.
    [11] 范珍珍,王鑫,王超,等.整合分析氮磷添加对土壤酶活性的影响[J].应用生态学报,2018,29(4):1266-1272.
    [12] 曾清苹,何丙辉,李源,等.模拟氮沉降对重庆缙云山马尾松林土壤呼吸和酶活性的季节性影响[J].环境科学,2016,37(10):3971-3978.
    [13] Kim H, Kang H. The impacts of excessive nitrogen additions on enzyme activities and nutrient leaching in two contrasting forest soils[J].Journal of Microbiology,2011,49(3):369-375.
    [14] Yang X, Richardson T K, Jain A K. Contributions of secondary forest and nitrogen dynamics to terrestrial carbon uptake[J].Biogeosciences,2010,7(10):3041-3050.
    [15] Xu Z, Tu L, Hu T, et al. Implications of greater than average increases in nitrogen deposition on the western edge of the Szechwan Basin, China[J].Environmental Pollution,2013,177(4):201-202.
    [16] 方运霆,莫江明,周国逸,等. 南亚热带森林土壤有效氮含量及其对模拟氮沉降增加的初期响应[J]. 生态学报,2004, 24(11):2353-2359.
    [17] 陈刚,涂利华,彭勇,等.瓦屋山扁刺栲—中华木荷常绿阔叶次生林土壤有机碳组分特征[J].生态学报,2015,35(18):6100-6109.
    [18] 李顺.施氮和凋落物增减对湿性常绿阔叶林土壤呼吸和土壤碳、氮的影响[D].成都:四川农业大学,2018.
    [19] 杨超,黄力,高祥阳,等.缙云山常绿阔叶林凋落动态及组成[J].林业科学研究,2016,29(1):1-9.
    [20] 周纪东,史荣久,赵峰,等.施氮频率和强度对内蒙古温带草原土壤pH及碳、氮、磷含量的影响[J].应用生态学报,2016,27(8):2467-2476.
    [21] 李琛琛,刘宁,郭晋平,等.氮沉降对华北落叶松叶特性和林下土壤特性的短期影响[J].生态环境学报,2014,23(12):1924-1932.
    [22] 邓仁菊,杨万勤,胡建利,等.亚高山针叶林土壤有机层有效氮动态及其对外源C、N增加的响应[J].生态学报,2009,29(5):2716-2724.
    [23] 彭勇.模拟氮沉降对瓦屋山次生常绿阔叶林地下碳循环过程和土壤生化特性的影响[D].四川雅安:四川农业大学,2016.
    [24] 林宝平,林思祖,何宗明,等.不同碳输入方式对沿海防护林土壤氮库的影响[J].森林与环境学报,2016,36(4):385-391.
    [25] 汪金松,赵秀海,张春雨,等.模拟氮沉降对油松林土壤有机碳和全氮的影响[J].北京林业大学学报,2016,38(10):88-94.
    [26] 刘志江,林伟盛,杨舟然,等.模拟增温和氮沉降对中亚热带杉木幼林土壤有效氮的影响[J].生态学报,2017,37(1):44-53.
    [27] 沈芳芳,袁颖红,樊后保,等.氮沉降对杉木人工林土壤有机碳矿化和土壤酶活性的影响[J].生态学报,2012,32(2):517-527.
    [28] Lauber C L, Sinsabaugh R L, Zak D R. Laccase gene composition and relative abundance in Oak forest soil is not affected by short-term nitrogen fertilization[J].Microbial Ecology,2009,57(1):50-57.
    [29] 涂利华,胡红玲,胡庭兴,等.模拟氮沉降对华西雨屏区光皮桦林土壤酶活性的影响[J].应用生态学报,2012,23(8):2129-2134.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700