用户名: 密码: 验证码:
砂砾质戈壁沉积物分形维数计算及其对风沙作用的指示意义
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Calculation of fractal dimension of gobi sediments and its significance to the effect of wind-induced soil erosion accumulation
  • 作者:刘茜 ; 王海兵 ; 左合君 ; 肖建华
  • 英文作者:LIU Xiya;WANG Haibing;ZUO Hejun;XIAO Jianhua;College of Desert Control Science and Engineering, Inner Mongolia Agricultural University,Key Laboratory of Aeolian Sand Physics and Sand Control Engineering in Inner Mongolia;Northwest Institute of Ecology and Environmental Resources, Chinese Academy of Sciences;
  • 关键词:沉积物 ; 分形维数 ; 修正方法 ; 砂砾质戈壁
  • 英文关键词:sediments;;fractal dimension;;method modification;;sandy gravel gobi
  • 中文刊名:GHZH
  • 英文刊名:Journal of Arid Land Resources and Environment
  • 机构:内蒙古农业大学沙漠治理学院内蒙古风沙物理与防沙治沙工程重点实验室;中国科学院西北生态环境资源研究院;
  • 出版日期:2019-07-11
  • 出版单位:干旱区资源与环境
  • 年:2019
  • 期:v.33;No.254
  • 基金:国家自然科学基金项目(41861001);; 中国科学院西北生态环境资源研究院青年基金资助
  • 语种:中文;
  • 页:GHZH201910019
  • 页数:6
  • CN:10
  • ISSN:15-1112/N
  • 分类号:127-132
摘要
传统分形理论在多峰态分布的砂砾质沉积物分形计算中存在局限性,且物理学意义不明确。文中利用分段式加权平均技术对传统分形维数计算方法进行修正,并计算了阿拉善高原北部砂砾质戈壁地表不同组分沉积物的分形维数值。结果表明:对传统分形维数计算法进行分段式加权平均修正能正确反映多峰态沉积物的分形特征且物理意义明确。砂砾质戈壁地表沉积物分形维数值介于2.0-3.0之间,并随跃移组分含量的增大而增大(R~2=0.723),随蠕移及风蚀残余组分含量的增大而减小(R~2=0.723);富砂组分戈壁地表沉积物分形维数值偏大(2.53-2.82),富砾组分戈壁地表沉积物分形维数值偏小(2.31-2.65)。
        The traditional fractal theory has some limitations in the fractal calculation for multi-peak distribution of sandy gravel sediments, and the physics of fractal dimension is not clear. In this paper, the traditional fractal dimension calculation method was modified by the segmental weighted averaging technique, and the fractal dimension of the sediments with different components on the gobi surface in the northern Alashan Plateau was calculated. The results showed that the segmental weighted averaging correction of the traditional fractal dimension calculation method reflected the fractal characteristics of multi-peak sediments accurately and the physics is clear. The fractal dimensions of sandy gravel sediments were between 2.0-3.0, it increased with the increase of the content of the jumping components(R~2=0.723), and decreased with the increase of the residual components wind erosion and creep movement(R~2=0.723). The fractal dimensions of the sand-rich components on the surface of gobi was relatively large(2.53-2.82), and that of the gravel-rich gobi components was relatively small(2.31-2.65).
引文
[1] 李保国.分形理论在土壤科学中的应用及其展望[J].土壤学进展,1994,22(1):1-10.
    [2] Sun Z X,Jiang Y Y,Wang Q B,Owens P R.A fractal evaluation of particle size distributions in an eolian loess-paleosol sequence and the linkage with pedogenesis[J].Catena,2018,165:80-91.
    [3] San José Martínez F,Martín M A,at al.Multifractal analysis of discretized X-ray CT images for the characterization of soil macroporestructures[J].Geoderma,2010,156(1):32-42.
    [4] 中国黑戈壁地区生态本底考察队.中国黑戈壁研究[M].北京:科学出版社,2014:27-39.
    [5] 申元村,王秀红,程维明,吴金凤,卢琦,冯益明.中国戈壁综合自然区划研究[J].地理科学进展,2016,35(1):57-66.
    [6] Mandelbrot B B.How long is the coast of Britain statistical self-simility and fractional dimension[J].Science,1967,150:636-638.
    [7] Fu Y,Zheng Z Y,Xiao R,at al.Comparison of two fractal interpolation methods[J].Physica A:Statistical Mechanics and its Applications,2017,469:563-571.
    [8] Liu Y Y,Gong Y M,Wang X,at al.Volume fractal dimension of soil particles and relationships with soil physical-chemical properties and plant species diversity in an alpine grassland under different disturbance degrees[J].Journal of Arid Land,2013,5(4):480-487.
    [9] 杨培岭,罗远培,石元春.用粒径的重量分布表征的土壤分形特征[J].科学通报,1993,38(20):1896-1899.
    [10] 杨婷,景航,姚旭,等.黄土丘陵不同土地利用方式下土壤颗粒组成及其分形维数特征[J].水土保持研究,2016,23(3):1-5,24.
    [11] 王德,傅伯杰,陈利顶,赵文武,汪亚峰.不同土地利用类型下土壤粒径分形分析-以黄土丘陵沟壑区为例[J].生态学报,2007,27(7):3081-3089.
    [12] Zhao S W,Su J,Yang Y H,et al.A fractal method of estimating soil structure changes under different vegetations on Ziwuling mountains of the Loess Plateau,China[J].Agricultural Sciences in China,2006,5(7):530-538.
    [13] 贾晓红,李新荣,张景光,张志山,王新平,谭会娟.沙冬青灌丛地的土壤颗粒大小分形维数空间变异性分析[J].生态学报,2006,26(9):2827-2833.
    [14] 阎欣,安慧.宁夏荒漠草原沙漠化过程中土壤粒径分形特征[J].应用生态学报,2017,28(10):3243-3250.
    [15] Hu H C,Tian F Q,Hu H P .Soil particle size distribution and its relationship with soil water and salt under mulched drip irrigation in Xinjiang of China[J].Science China Technological Sciences,2011,54(6):1568-1574.
    [16] Yong L,Chengmin H,Baoliang W,et al.A unified expression for grain size distribution of soils[J].Geoderma,2017,288:105-119.
    [17] Bayat H,Rastgo M,Zadeh M M,et al.Particle size distribution models,their characteristics and fitting capability[J].Journal of Hydrology,2015,529:872-889.
    [18] 董智,王丽琴,杨文斌,李红丽,李卫,张志鹏,丛日春.额济纳盆地戈壁沉积物粒度特征分析[J].中国水土保持科学,2013,11(1):32-38.
    [19] Bagnold R A .The physics of blown sand and desert dunes methuen[J].Nature,1941,18(4):167-187.
    [20] 吴正.风沙地貌与治沙工程学[M].北京:科学出版社,2003:42

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700