用户名: 密码: 验证码:
石英纤维增强聚酰亚胺树脂基复合材料的疲劳特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Fatigue performance of quartz fiber/polyimide composite at elevated temperature
  • 作者:王婕 ; 周万城 ; 罗发 ; 朱冬梅 ; 黄智斌 ; 卿玉长
  • 英文作者:WANG Jie;ZHOU Wancheng;LUO Fa;ZHU Dongmei;HUANG Zhibin;QING Yuchang;State Key Laboratory of Solidification Processing, Northwestern Polytechnical University;
  • 关键词:静态拉伸性能 ; S-N曲线 ; 高温拉-拉疲劳 ; 损伤机理
  • 英文关键词:ultimate tensile strength;;S-N curves;;elevated-temperature tension-tension fatigue;;failure mechanisms
  • 中文刊名:GNCL
  • 英文刊名:Journal of Functional Materials
  • 机构:西北工业大学国家凝固重点实验室;
  • 出版日期:2019-06-30
  • 出版单位:功能材料
  • 年:2019
  • 期:v.50;No.429
  • 语种:中文;
  • 页:GNCL201906014
  • 页数:4
  • CN:06
  • ISSN:50-1099/TH
  • 分类号:85-88
摘要
石英纤维增强聚酰亚胺树脂基复合材料具有比强度高、比刚度大、结构可设计性等很多优点,将在武器装备结构件领域广泛应用。对石英纤维增强聚酰亚胺树脂基复合材料的室温及高温拉伸性能进行了研究;对石英纤维增强聚酰亚胺树脂基复合材料的室温及高温拉-拉疲劳特性进行了研究。结果表明,复合材料的拉伸强度及弹性模量随着测试温度的升高而降低,并且在300℃时保留率分别是68%和80%。在相同应力水平下,复合材料的室温疲劳寿命比高温疲劳寿命高。在高温下,由于树脂软化,复合材料的经纱裂纹减缓。通过疲劳断裂的断口形貌和疲劳寿命变化,对复合材料损伤机制进行评估。
        The tensile stress-strain behavior and tensile strength of quartz fiber reinforced polyimide matrix(QFRP) composite were measured at room and elevated temperatures. The average tensile strength and elasticity modulus decreased with increasing temperature, and remained 68% and 80% at 300 ℃, respectively. Tension-tension fatigue behavior of a QFRP composite was studied at room and elevated temperatures. At the same cyclic stress level, a longer fatigue life of QFRP composites was obtained at room temperature, compared to elevated temperature. Damage evolution was discussed on the basis of cross-section and mechanical variation. The dominant damage mechanism of warp yarn cracking was mitigated at elevated temperatures as a direct result of resin softening, which was also the case for the fatigue test specimens. This study yielded an improved understanding of damage mechanisms and local deformation behavior for QFRP composite, which was valuable for designers.
引文
[1] Wilkinson M P,Ruggles-Wrenn M B.Fatigue of a 2D unitized polymer/ceramic matrix composite at elevated temperature [J].Polymer Testing,2016,54:203-213.
    [2] Ahci E,Talreja R.Characterization of viscoelasticity and damage in high temperature polymer matrix composites [J].Composites Science and Technology,2006,66(14):2506-2519.
    [3] Zhang Y D,Zhang L,Guo L C,et al.Investigation on fatigue performance of T800 composites structural component [J].Composite Structures,2018,195:26-35.
    [4] Wang J,Zhou W C,Luo F,et al.Mechanical performance of nanosilica filled quartz fiber/polyimide composites at room and elevated temperatures [J].Journal of Materials Science,2017,52:12207-12220.
    [5] Wang J,Zhou W C,Luo F,et al.Dielectric and microwave absorbing properties of quartz fiber/amorphous carbon/polyimide composites at elevated temperature [J].Journal of Nanoscience and Nanotechnology,2017,17:3751-3758.
    [6] Vieira P R,Carvalho E M L,Vieira J D,et al.Experimental fatigue behavior of pultruded glass fibre reinforced polymer composite materials [J].Composites Part B,2018,146:69-75.
    [7] Flore D,Wegener K,Seel D,et al.Investigation of chemical ageing and its effect on static and fatigue strength of continuous fibre reinforced plastics [J].Composites Part A,2016,90:359-370.
    [8] Zrida H,Fernberg P,Ayadi Z,et al.Microcracking in thermally cycled and aged carbon fibre/polyimide laminates [J].International Journal of Fatigue,2017,94:121-130.
    [9] Vallons K A M,Drozdzak R,Charret M,et al.Assessment of the mechanical behaviour of glass fibre composites with a tough polydicyclopentadiene (PDCPD) matrix [J].Composite Parts A,2015,78:191-200.
    [10] John M,Zouheir F,Cheung P,et al.A microscopic investigation of failure mechanisms in a triaxially braided polyimide composite at room and elevated temperatures [J].Materials & Design,2014,53:1026-1036.
    [11] Chen W S,Hao H,Jong M,et al.Quasi-static and dynamic tensile properties of basalt fibre reinforced polymer [J].Composites Part B,2017,125:123-133.
    [12] Allan M,Swetha S,Gerard V E,et al.Flexural behavior of an FRP sandwich system with glass-fiber skins and a phenolic core at elevated in-service temperature [J].Composite Structures,2016,152:96-105.
    [13] Rathore D K,Prusty R K,Kumar D S,et al.Mechanical performance of CNT-filled glass fiber/epoxy composite in in-situ elevated temperature environments emphasizing the role of CNT content [J].Composites Part A,2016,84:364-376.
    [14] Liu C D,Cheng L F,Luan X G,et al.Damage evolution and real-time non-destructive evaluation of 2D carbon-fiber/SiC-matrix composites under fatigue loading [J].Materials Letters,2008,62(24):3922-3924.
    [15] John M,Zouheir F,Cheung P,et al.A microscopic investigation of failure mechanisms in a triaxially braided polyimide composite at room and elevated temperatures[J].Materials & Design,2014,53:1026-1036.
    [16] Allan M,Swetha S,Gerard V E,et al.Flexural behavior of an FRP sandwich system with glass-fiber skins and a phenolic core at elevated in-service temperature [J].Composite Structures,2016,152:96-105.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700