用户名: 密码: 验证码:
在轨空间智能制造:分布式调度建模与优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:In-space intelligent manufacturing:Distributed scheduling and optimization
  • 作者:李政阳 ; 云昕 ; 杨怡欣 ; 段文哲 ; 汪寿阳 ; 刘翱 ; 刘波
  • 英文作者:LI Zhengyang;YUN Xin;YANG Yixin;DUAN Wenzhe;WANG Shouyang;LIU Ao;LIU Bo;Academy of Mathematics and Systems Science, Chinese Academy of Sciences;University of Chinese Academy of Sciences;School of Management, Wuhan University of Science and Technology;
  • 关键词:在轨空间智能制造 ; 分布式调度 ; 易理优化算法 ; 模因算法 ; 智能优化
  • 英文关键词:in-space intelligent manufacturing;;distributed scheduling;;I Ching philosophy inspired optimization;;memetic algorithms;;intelligent optimization
  • 中文刊名:XTLL
  • 英文刊名:Systems Engineering-Theory & Practice
  • 机构:中国科学院数学与系统科学研究院;中国科学院大学;武汉科技大学管理学院;
  • 出版日期:2019-03-25
  • 出版单位:系统工程理论与实践
  • 年:2019
  • 期:v.39
  • 基金:中国科学院前沿重点研究计划(QYZDB-SSW-SYS020);; 国家自然科学基金重大项目子课题(71390331);; 教育部人文社会科学研究青年基金项目(16YJCZH056);; 湖北省自然科学基金(2017CFB427)~~
  • 语种:中文;
  • 页:XTLL201903013
  • 页数:20
  • CN:03
  • ISSN:11-2267/N
  • 分类号:163-182
摘要
在轨空间制造系统是在行星大气层外的需要地面工厂、在轨空间工厂、天地运载工具协同的以进行空间设施建造为目标的一类分布式制造系统.分布式调度建模和高效优化求解技术是实现在轨空间智能制造的关键技术之一.本文针对一类具有组件地面分布式制造及运输、地空分批次运输、组件在轨装配等典型特点的在轨空间智能制造系统,将其分解为分布式同质流水线调度,考虑运输时间的同速并行机调度,考虑工件释放时间、机器可用时间、机器处理能力的单机批调度以及考虑组件释放时间、优先约束的单机调度等问题,并基于模型协调思想建立以最小化组件生产到产品装配总时长为目标的分布式多阶段调度模型.进而,将用于求解连续优化问题的易理优化算法扩展到离散调度问题,提出求解该分布式调度问题的基于易理优化的模因算法.基于中规模、大规模算例的仿真结果和算法分析比较表明:相较于粒子群算法、教学算法、水波算法等智能优化算法,所提算法是一种求解分布式多阶段调度问题的可行、有效算法.值得一提的是,这是第一篇关于在轨空间智能制造系统调度优化的研究.
        In space manufacturing system is a kind of exoatmospheric, distributed manufacturing system which coordinates the ground-based factories, in-orbit space factories, and space transportation vehicles and aims at space facilities construction. Key issues to realize intelligent in-orbit space manufacturing are the modeling of the distributed scheduling systems as well as the designing of the efficient and effective optimization methods. In this paper, an in-orbit space intelligent manufacturing system with distributed ground manufacturing and transportation, ground-air batch transportation and in-orbit assembly process is addressed. The scheduling of the system is modeled as multi-stage distributed scheduling problem,which is decomposed into four subproblems, i.e., distributed homogeneous flow shop scheduling, parallel machines scheduling with transportation time, single machine batch scheduling problem with release time,machine available time and machine capacity constraints, and single machine scheduling problem with release time and precedence constraints, with respect to the criterion of minimizing of the maximum completion time. In addition, the recently proposed I Ching philosophy inspired optimization(ICO)which originally focused on continuous optimization is extended to solve combinatorial optimization, and ICO based memetic algorithm(ICO-MA) is proposed to solve the aforementioned scheduling problem.Experimental results on middle scale and large scale instances show the proposed algorithm is effective and efficient compared with the state-of-the-art algorithms, e.g., particle swarm optimization, teaching learning based optimization and water wave optimization. The proposed ICO-MA could be a feasible and effective algorithm to solve distributed multi-stage scheduling problems. To the best of our knowledge, it is the first study on distributed scheduling of in-orbit space intelligent manufacturing system.
引文
[1]国家制造强国建设战略咨询委员会.《中国制造2025》重点领域技术路线图[R].2015.National Manufacturing Strategy Advisory Committee. Made in China 2025, impoatant area technology roadmap[R].2015.
    [2] Neill G. The space manufacturing facility concept[C]//The Princeton/AIAA/NASA Conference, 1975:7-12.
    [3] Tethers. SL awards TUI contract for in-space manufacturing demo[EB/OL]. http://www.tethers.com/index.html.
    [4] Tethers. DARPA awards TUI/firmamentum contract to develop"constructable"persistent GEO platform[EB/OL].http://www. tethers. com/index. html.
    [5] Wooten J O, Tang C S. Operations in space:Exploring a new industry[J]. Decision Sciences,2018, https://doi.org/10.1111/deci.12312.
    [6] Behnamian J,Ghomi S F. A survey of multi-factory scheduling[J]. Journal of Intelligent Manufacturing, 2016,27(1):231-249.
    [7] Shaw M J. A distributed scheduling method for computer integrated manufacturing:The use of local area networks in cellular systems[J]. International Journal of Production Research, 1987, 25(9):1285-1303.
    [8] Van Brussel H, Valckenaers P, Bongaerts L, et al. Architectural and system design issues in holonic manufacturing systems[C]//The Third IFAC/IFIP/IFORS Workshop on Intelligent Manufacturing Systems, 1995:1-6.
    [9] Perkins J R, Kumark P. Stable, distributed, real-time scheduling of flexible manufacturing/assembly/diassembly systems[J]. IEEE Transactions on Automatic Control, 1989, 34(2):139-148.
    [10] Jia H, Nee A Y, Fuh J Y, et al. A modified genetic algorithm for distributed scheduling problems[J]. Journal of Intelligent Manufacturing, 2003, 14(3):351-362.
    [11] De Giovanni L, Pezzella F. An improved genetic algorithm for the distributed and flexible job-shop scheduling problem[J]. European Journal of Operational Research, 2010, 200(2):395-408.
    [12]王凌,邓瑾,王圣尧.分布式车间调度优化算法研究综述[J].控制与决策,2016, 31(1):1-11.Wang L, Deng J, Wang S Y. Survey on optimization algorithms for distributed shop scheduling[J]. Control and Decision, 2016, 31(1):1-11.
    [13] Chen X, Ong Y S, Lim M H, et al. A multi-facet survey on memetic computation[J]. IEEE Transactions on Evolutionary Computation, 2011, 15(5):591-607.
    [14] Ong Y S, Keane A J. Meta-Lamarckian learning in memetic algorithms[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(2):99-110.
    [15] Li Z Y, Duan W Z, Yang Y X, et al. I Ching philosophy inspired optimization[C]//IEEE International Conference on Control and Automation. IEEE, 2017:353-360.
    [16] Naderi B, Ruiz R. The distributed permutation flowshop scheduling problem[J]. Computers and Operations Research, 2010, 37(4):754-768.
    [17] Hatami S, Ruiz R, Andres Romano C. The distributed assembly permutation flowshop scheduling problem[J].International Journal of Production Research, 2013, 51(17):5292-5308.
    [18]丁胡送,何平,徐晓燕.柔性对分布式制造系统绩效的影响[J].系统工程理论与实践,2011,31(9):2690-2699.Ding H S, He P, Xu X Y. Impact of flexiblity on performance of decentralized manufacturing system[J]. Systems Engineering—Theory&Practice, 2011, 31(9):2690-2699.
    [19]何琨,赵勇,陈阳.分布式环境下多任务调度问题的分析与求解[J].系统工程理论与实践,2007, 27(5):119-125.He K, Zhao Y, Chen Y, Analysis and solutions for multitasks scheduling in distributed environment[J]. Systems Engineering—Theory&Practice, 2007, 27(5):119-125.
    [20] Tavakkoli-Moghaddam R, Taheri F, Bazzazi M, et al. Design of a genetic algorithm for bi-objective unrelated parallel machines scheduling with sequence-dependent setup times and precedence constraints[J]. Computers and Operations Research, 2009, 36(12):3224-3230.
    [21] Hooker J N. A hybrid method for the planning and scheduling[J]. Constraints, 2005, 10(4):385-401.
    [22] Behnamian J, Ghomi S F. The heterogeneous multi-factory production network scheduling with adaptive communication policy and parallel machine[J]. Information Sciences, 2013, 219(10):181-196.
    [23] Naderi B, Ruiz R. A scatter search algorithm for the distributed permutation flowshop scheduling problem[J].European Journal of Operational Research, 2014, 239(2):323-334.
    [24] Wang S Y, Wang L, Liu M, et al. An effective estimation of distribution algorithm for solving the distributed permutation flow-shop scheduling problem[J]. International Journal of Production Economics, 2013, 145(1):387-396.
    [25] Gao J, Chen R. An NEH-based heuristic algorithm for distributed permutation flowshop scheduling problems[J].Scientific Research and Essays, 2011, 6(14):3094-3100.
    [26] Komaki G, Mobin S, Teymourian E, et al. A general variable neighborhood search algorithm to minimize makespan of the distributed permutation flowshop scheduling problem[J]. Industrial and Manufacturing Engineering, 2015, 9(8):2701-2708.
    [27] Wang J, Wang L, Shen J. A hybrid discrete cuckoo search for distributed permutation flowshop scheduling problem[C]//IEEE Congress on Evolutionary Computation, IEEE, 2016:2240-2246.
    [28]于明远,俞栋辉,叶蕾.基于改进微粒群的分布式工作流调度优化[J].系统工程理论与实践,2011,31(S2):191-196.Yu M Y, Yu D H, Ye L. Distributed workflow scheduling based on modified particle swarm optimization[J].Systems Engineering—Theory&Practice, 2011, 31(S2):191-196.
    [29] Bargaoui H, Driss O B, Gh Dira K. A novel chemical reaction optimization for the distributed permutation flowshop scheduling problem with makespan criterion[J]. Computers and Industrial Engineering, 2017, 9(111):239-250.
    [30] Bargaoui H, Driss O B, Gh Dira K. Towards a distributed implementation of chemical reaction optimization for the multi-factory permutation flowshop scheduling problem[J]. Procedia Computer Science, 2017, 112:1531-1541.
    [31] Lin S W, Ying K C. Minimizing makespan for solving the distributed no-wait flowshop scheduling problem[J].Computers and Industrial Engineering, 2016, 99:202-209.
    [32] Deng J, Wang L,Shen J,et al. An improved harmony search algorithm for the distributed two machine flowshop scheduling problem[C]//Proceedings of the 2nd International Conference on Harmony Search Algorithm(ICHSA2015). Berlin, Heidelberg:Springer, 2016:97-108.
    [33] Wang K, Huang Y, Qin H. A fuzzy logic-based hybrid estimation of distribution algorithm for distributed permutation flowshop scheduling problems under machine breakdown[J]. Journal of the Operational Research Society, 2016, 67(1):68-82.
    [34] Rifai A P, Nguyen H T, Dawal S Z M. Multi-objective adaptive large neighborhood search for distributed reentrant permutation flow shop scheduling[J]. Applied Soft Computing, 2016, 40:42-57.
    [35] Duan W Z, Li Z Y, Ji M C, et al. A hybrid estimation of distribution algorithm for distributed permutation flowshop scheduling with flowline eligibility[C]//IEEE Congress on Evolutionary Computation, IEEE, 2016:2581-2587.
    [36] Duan W Z, Li Z Y, Yang Y X, et al. EDA based probabilistic memetic algorithm for distributed blocking permutation flowshop scheduling with sequence dependent setup time[C]//IEEE Congress on Evolutionary Computation, IEEE, 2017:992-999.
    [37] Li Z Y, Duan W Z, Ji M C, et al. The distributed permutation flowshop scheduling problem with different transport timetables and loading capacities[C]//IEEE Congress on Evolutionary Computation, IEEE, 2016:2433-2437.
    [38] Komaki M, Malakooti B. General variable neighborhood search algorithm to minimize makespan of the distributed no-wait flow shop scheduling problem[J]. Production Engineering, 2017, 11(3):315-329.
    [39] Shao W, Pi D, Shao Z. A hybrid iterated greedy algorithm for the distributed no-wait flow shop scheduling problem[C]//IEEE Congress on Evolutionary Computation, IEEE, 2017:9-16.
    [40] Ying K C, Lin S W. Minimizing makespan in distributed blocking flowshops using hybrid iterated greedy algorithms[J]. IEEE Access, 2017, 5:15694-15705.
    [41] Ying K C, Lin S W, Cheng C Y, et al. Iterated reference greedy algorithm for solving distributed no-idle permutation flowshop scheduling problems[J]. Computers and Industrial Engineering, 2017, 110:413-423.
    [42] Ying K C, Lin S W. Minimizing makespan for the distributed hybrid flowshop scheduling problem with multiprocessor tasks[J]. Expert Systems with Applications, 2018, 92:132-141.
    [43] Deng J, Wang L. A competitive memetic algorithm for multi-objective distributed permutation flow shop scheduling problem[J]. Swarm and Evolutionary Computation, 2017, 32(12):121-131.
    [44] Deng J, Wang L, Wu C, et al. A competitive memetic algorithm for carbon-efficient scheduling of distributed flow-shop[C]//International Conference on Intelligent Computing, Springer, 2016:476-488.
    [45] Chung S, Lau H, Choy K, et al. Application of genetic approach for advanced planning in multi-factory environment[J]. International Journal of Production Economics, 2010, 127(2):300-308.
    [46] Jeong I J, Yim S B. A job shop distributed scheduling based on Lagrangian relaxation to minimise total completion time[J]. International Journal of Production Research, 2009, 47(24):6783-6805.
    [47] Hatami S, Ruiz R, Andres Romano C. Heuristics and metaheuristics for the distributed assembly permutar tion flowshop scheduling problem with sequence dependent setup times[J]. International Journal of Production Economics, 2015, 169:76-88.
    [48] Wang S Y,Wang L. An estimation of distribution algorithm-based memetic algorithm for the distributed assembly permutation flow-shop scheduling problem[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems,2016, 46(1):139-149.
    [49] Lin J, Wang Z J, Li X. A backtracking search hyper-heuristic for the distributed assembly flow-shop scheduling problem[J]. Swarm and Evolutionary Computation, 2017, 36(Supplement C):124-135.
    [50] Lin J,Zhang S. An effective hybrid biogeography-based optimization algorithm for the distributed assembly permutation flow-shop scheduling problem[J]. Computers and Industrial Engineering, 2016, 97:128-136.
    [51] Deng J, Wang L, Wang S Y, et al. A competitive memetic algorithm for the distributed two-stage assembly flow-shop scheduling problem[J]. International Journal of Production Research, 2016, 54(12):3561-3577.
    [52] Ji M C, Yang Y X, Duan W Z, et al. Scheduling of no-wait stochastic distributed assembly flowshop by hybrid PSO[C]//IEEE Congress on Evolutionary Computation, IEEE, 2016:2649-2654.
    [53] Wang K Y, Zhang R, Liu B. Variable neighborhood based memetic algorithm for distributed assembly permutar tion flowshop[C]//IEEE Congress on Evolutionary Computation, IEEE, 2016:1682-1686.
    [54] Du X Y, Ji M C, Li Z Y, et al. Scheduling of stochastic distributed assembly flowshop under complex constraints[C]//IEEE Symposium Series on Computational Intelligence, IEEE, 2016:1-7.
    [55] Li P, Yang Y X, Du X Y, et al. Iterated local search for distributed multiple assembly no-wait flowshop scheduling[C]//IEEE Congress on Evolutionary Computation, IEEE, 2017:1565-1571.
    [56] Yang Y X, Li P, Wang S Y, et al. Scatter search for distributed assembly flowshop scheduling to minimize total tardiness[C]//IEEE Congress on Evolutionary Computation, IEEE, 2017:861-868.
    [57] Zhang G, Xing K, Cao F. Scheduling distributed flowshops with flexible assembly and set-up time to minimise makespan[J]. International Journal of Production Research, 2017. DOI:10.1080/00207543.2017.1401241.
    [58]王凌,王圣尧,方晨.分布估计调度算法[M].北京:清华大学出版社,2017.Wang L, Wang S Y, Fang C. Estimated of distribution algorithm for scheduling[M]. Beijing:Tsinghua University Press, 2017.
    [59] Toptal A, Sabuncuoglu I. Distributed scheduling:A review of concepts and applications[J]. International Journal of Production Research, 2010, 48(18):5235-5262.
    [60] Stryker J. A job shop for space manufacturing[M]. The 6th Manufacturing Conference, 1987.
    [61] Rose J. Role of a space station in pharmaceutical manufacturing[M]. Space Station Policy Planning and Utilization, 1983:3116.
    [62] Mcpherson A, Delucas L J. Microgravity protein crystallization[J]. NPJ Microgravity, 2015, 1:15010.
    [63] O'Brien S, Gathings W,Workman G, et al. Space station facilities for processing optical materials[C]//Proceedings of the 2001 Conference and Exhibit on International Space Station Utilization, F, 2001.
    [64] Made in Space. Made in space fiber[EB/OL]. http://www.madeinspace.us/project/fiber/.
    [65] Tethers. TUI/Firmamentum and nanoRacks to develop robotic arm to operate experiments aboard the ISS[EB/OL].http://www.tethers.com/index.html.
    [66] Tethers. TUI TUI/Firmamentum lands DARPA contract to pursue in-space manufacture of a high-throughput satcom satellite[EB/OL]. http://www.tethers.com/index.html.
    [67] Albus J, Lumia R, Mccain H. Software architecture for manufacturing and space robotics[C]//The 2nd Symposium on Automation, Robotics and Advanced Computing for the National Space Program, 1987:1687.
    [68] Bodiford M, Ray J, Gilley S, et al. Are we there yet? Developing in-situ fabrication and repair technologies to explore and live on the moon and mars[C]//The 1st Space Exploration Conference:Continuing the Voyage of Discovery, 2005:2624.
    [69] Priest C, Bradford R. Space industrialization studies—An overview[C]//The 3rd Conference on Space Manufacturing Facilities, 1977:546.
    [70] Murphy J T. Transportation concepts for space industrialization[C]//The Bicentennial Space Symposium, American Astronautical Society, 1977:139-154.
    [71] Humphries P, Barez F. Modular manufacturing:CIM in space application[C]//The Space 2004 Conference and Exhibit, 2001:5856.
    [72]李云.DARPA建立卫星服务联盟讨论在轨维修标准[N/OL]. http://www.dsti.net/Information/News/102291.Li Y. DARPA establish satellite service alliance to discuss in-orbit maintenance standards[N/OL]. http://www.dsti.net/Information/News/102291.
    [73]丁新玲,吴丽娜.国外太空制造技术研究[J].航天制造技术,2007,12(6):11-14.Ding X L, Wu L N. Foreign space manufacturing technology research[J]. Aerospace Manufacturing Technology,2007, 12(6):11-14.
    [74]祁俊峰,曾如川,王震,等.太空原位制造和修复技术研究现状分析[J].载人航天,2014, 20(6):580-585.Qi J F, Zeng R C, Wang Z, et al. Analysis of research status on in-situ fabrication and repair technology in space[J]. Manned Spaceflight, 2014, 20(6):580-585.
    [75]姚娟,王平.空间微重力3D打印技术发展及应用研究[J].铸造技术,2016, 37(1):129-131.Yao J, Wang P. Research on development and application of space microgravity 3D printing[J]. Foundary Technology, 2016, 37(1):129-131.
    [76]刘琦,梁晓康,陈济轮,等.增材制造技术在国外航天领域的研究应用现状[J]·导弹与航天运载技术,2016(6):103-106.Liu Q, Liang X K, Chen J L, et al. Research and application status of additive manufacturing in foreign aerospace[J]. Missiles and Space Vehicles, 2016(6):103-106.
    [77]刘晓峰,谭惠丰,杜星文.充气太空结构及其展开模拟研究[J].哈尔滨工业大学学报,2004, 36(4):508-512.Liu X F, Tan H F, Du X W. Inflatable space structures and deployment simulation[J]. Journal of Harbin Institute of Technology, 2004, 36(4):508-512.
    [78] Pinedo M. Scheduling:Theory, algorithms and systems[M]. New Jersey:Prentice-Hall, Englewood Cliffs, 1995.
    [79] Garey M, Johnson D, Sethi R. The complexity of flowshop and jobshop scheduling[J]. Mathematics of Operations Research,1976, 1(2):117-129.
    [80]余敦康.周易现代解读[M].北京:商务印书馆,2007.Yu D K. Modern interpretation of I Ching[M]. Beijing:The Commercial Press, 2007.
    [81]朱高正.易传通解[M].上海:华东师范大学出版社,2015.Zhu G Z. Interpretation of Ten Wings in I Ching[M]. Shanghai:East China Normal University Press, 2015.
    [82] Chen C L P, Zhang T, Chen L, et al. I-Ching divination evolutionary algorithm and its convergence analysis[J].IEEE Transactions on Cybernetics, 2017, 47(1):2-13.
    [83] Chen C L P, Zhang T, Tam S C. A novel evolutionary algorithm solving optimization problems[C]//IEEE International Conference on Systems, Man and Cybernetics, IEEE, 2014:557-561.
    [84] Li Z, Feng X, Duan W, et al, I Ching philosophy inspired optimization[C]//IEEE International Conference on Control and Automation(ICCA), 2017:353-360.
    [85]张玉州,李锐,江克勤,等.基于自适应多局部搜索memetic算法的多跑道地面等待问题求解[J].系统工程理论与实践,2012, 32(11):2523-2532.Zhang Y Z, Li R, Jiang K Q, et al. Solution to multi-runway ground-holding problem based on adaptive multilocal search memetic algorithm[J]. Systems Engineering—Theory&Practice, 2012, 32(11):2523-2532.
    [86] Yang Y, Feng X, Xin B, et al. Chapter 15:Particle swarm optimization based memetic algorithms framework for scheduling of central planned and distributed flowshops[M]//Swarm Intelligence:Applications. The Institution of Engineering and Technology, 2018.
    [87]王凌,刘波.微粒群优化与调度算法[M].北京:清华大学出版社,2008.Wang L,Liu B. Particle swarm optimization and scheduling algorithms[M]. Beijing:Tsinghua University Press,2008.
    [88] Yun X, Feng X, Lyu X, et al. A novel water wave optimization based memetic algorithm for flow-shop scheduling[C]//IEEE Congress on Evolutionary Computation, IEEE, 2016:1971-1976.
    [89] Qu X, Zhang R, Liu B, et al. An improved TLBO based memetic algorithm for aerodynamic shape optimization[J]. Engineering Applications of Artificial Intelligence, 2017, 57:1-15.
    [90] Liu B, Wang L, Liu Y, et al. A unified framework for population-based metaheuristics[J]. Annals of Operations Research 2011, 186(1):231-262.
    [91] Liu B, Wang L, Liu Y, et al. An effective hybrid particle swarm optimization for batch scheduling of polypropylene processes[J]. Computers and Chemical Engineering, 2010, 34:518-528.
    [92] Li B B, Wang L, Liu B. An effective PSO-based hybrid algorithm for multiobjective permutation flow shop scheduling[J]. IEEE Transactions on Systems, Man and Cybernetics—Part A:Systems and Humans, 2008,38(4):818-831.
    [93] Liu B, Wang L, Jin Y H. An effective hybrid PSO-based algorithm for flow shop scheduling with limited buffers[J].Computers and Operations Research, 2008, 35(9):2791-2806.
    [94] Liu B, Wang L, Jin Y H. An effective hybrid particle swarm optimization for no-wait flow shop scheduling[J].International Journal of Advanced Manufacturing Technology, 2007, 31:1001-1011.
    [95] Qu X, Li H, Zhang R, et al. An effective TLBO-based memetic algorithm for hypersonic reentry trajectory optimization[C]//IEEE Congress on Evolutionary Computation, IEEE, 2016:3178-3185.
    [96] Liu B, Xu J J, Qian B, et al. Probabilistic memetic algorithm for flowshop scheduling[C]//IEEE Symposium Series on Computational Intelligence, 2013:60-64.
    [97] Shi Y H, Eberhart R. A modified particle swarm optimizer[C]//IEEE World Congress on Evolutionary Computation, IEEE, 1998:69-73.
    [98] Rao R V,Savsani V J, Vakharia D. Teaching-learning-based optimization:A novel method for constrained mechanical design optimization problems[J]. Computer-Aided Design, 2011, 43(3):303-315.
    [99] Zheng Y J. Water wave optimization:A new nature-inspired metaheuristic[J]. Computers and Operations Research, 2015, 55:1-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700