用户名: 密码: 验证码:
重型钎具用钢组织性能控制的研究现状
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Status of Microstructure and Properties Control of Steel for Heavy Drill
  • 作者:蒋波 ; 刘雅政 ; 周乐育 ; 张朝磊 ; 陈列 ; 王国存
  • 英文作者:JIANG Bo;LIU Yazheng;ZHOU Leyu;ZHANG Chaolei;CHEN Lie;WANG Guocun;School of Materials Science and Engineering,University of Science and Technology Beijing;Beijing Research Institute of Mechanical & Electrical Technology;Qinghai Special Steel Engineering Technology Research Center,Xining Special Steel Co.,Ltd.;
  • 关键词:重型钎具用钢 ; 渗碳 ; 热处理 ; 组织性能 ; 强韧化
  • 英文关键词:steel for heavy drill;;carburizing;;heat treatment;;microstructure and property;;strengthening and toughening
  • 中文刊名:CLDB
  • 英文刊名:Materials Reports
  • 机构:北京科技大学材料科学与工程学院;北京机电研究所;西宁特殊钢股份有限公司青海省特殊钢工程技术研究中心;
  • 出版日期:2019-03-10
  • 出版单位:材料导报
  • 年:2019
  • 期:v.33
  • 基金:中央高校基本科研业务费(FRF-TP-16-032A1)~~
  • 语种:中文;
  • 页:CLDB201905020
  • 页数:8
  • CN:05
  • ISSN:50-1078/TB
  • 分类号:128-135
摘要
凿岩钎具是由钎头、钎杆、钎尾等部件组成的一个细长的杆件系统,是矿业资源开采、交通道路建设、水电项目施工、城镇化建设等施工项目中用于钻凿岩石的主要工具。重载钎具产品在使用过程中受到岩矿石的剧烈磨损、高压水流或气流以及矿坑水的冲刷腐蚀,要承载凿岩机活塞每分钟3 000次以上的高频冲击功,在拉压、弯曲及扭转应力的受力状况下高速冲击岩石。由于使用条件的限制和复杂的受力状况,高品质的重载钎具用钢一方面要求具有良好的强韧性匹配以保证其耐磨损和抗冲击性能,另一方面又要求其具有良好的加工工艺性能和一定的抗腐蚀能力。钎具钢的组织结构是各生产工艺系统控制的结果,包括对钎钢轧材纯净性和组织均匀性的控制、钎具的成形工艺以及后续的渗碳及热处理组织性能控制,因此,对钎具钢进行系统研究以提高钎具产品质量及使用寿命是十分必要的。通过对钎具的缺陷分析以及国内外优质钎具的组织性能对比得出,优质钎具在渗碳层外表面和基体之间的过渡区域存在大量下贝氏体,使高硬度的表面与韧性较好的心部有更好的组织过渡,是造成钎具质量存在差异的主要原因之一。为延长重载钎具疲劳寿命,轧材需控制夹杂物形态、尺寸及数量从而提高纯净度,改善带状组织特征以促进显微组织均匀化,而渗碳和后续热处理工艺控制对于改善疲劳寿命影响最为显著。对于渗碳工艺而言,需综合考虑渗碳工艺参数对碳浓度分布、显微组织和硬度分布的影响,避免在渗碳层表面形成残余奥氏体从而降低硬度,同时还要考虑成本。而对于渗碳后淬回火工艺而言,淬火的冷却方式是影响钎具钢渗碳和热处理后冲击韧性和组织性能分布的关键因素。重型钎具的最佳组织结构应为:表面为高硬度高耐磨性的高碳马氏体组织;过渡区为马氏体+下贝氏体的混合组织;心部为韧性较好的贝氏体组织,同时,具有组织性能平缓过渡的渗碳层。本文归纳了重型钎具的服役条件及各部件的性能要求,对目前重型钎具的失效方式、国内外钎具的组织性能对比进行介绍,分析了目前关于重载钎具用钢组织性能控制关键因素的研究现状,并针对重载钎具用钢组织性能系统控制目标的实现提出了总结与展望。
        Rock drill tool is made of spindly bars including drill bit,drill rod and shank. It is mainly used to drill rock in the construction projects,such as mining,road construction,hydropower construction,urbanization and so on. The heavy drill tools will be severely worn by the rock and eroded by the high pressure water or air and mine water in working condition. Besides,it will also bear the high-frequency impact more than 3 000 times per minute from piston in rock drill. At the same time,the heavy drill tools hit the rock with high speed in the working condition of tensioncompression,bending and torsion. Consequently,high quality steel for heavy drill tools should have good combination of strength and toughness to ensure the wear and shock resistances,good processing performance and resistance to corrosion.The microstructure of drill steel is determined by the systematic manufacturing processes including the control of the purity and microstructure uniformity of rolled products,the control of forming process of drill tool and the control of carburizing process and heat treatment microstructures.Consequently,it is very important to systematically investigate the drill steel in order to improve the quality and service life. The failure of drill tool was analyzed and the microstructures and properties of high quality drill tools at home and abroad were compared. Based on the analysis,it can be concluded that there is large amount of lower bainite at the transition zone between the outer surface and the matrix of high quality drill tools which can provide a good microstructure transition for the hard surface and ductile center. This is one of the reasons why there are differences in the quality of different drill tools.To improve the fatigue life of heavy drill tools,the morphology,size and quantity of inclusions in rolled bars should be controlled to improve the purity and the banded microstructure should be improved to promote the uniformity. Besides,it is the most remarkable to improve the fatigue life by optimizing the carburizing and heat treatment processes. The effects of carburizing parameters on the distribution of carbon content,microstructure and hardness should be considered comprehensively in order to avoid the formation of retained austenite at the surface of carburized layer and to avoid the reduction of the hardness. In addition,the cost of carburizing process should also be considered. For the quenching and tempering processes after carburizing,the cooling way of quenching is the key factor influencing the toughness and distribution of microstructure and properties of drill steel after carburizing. The optimal microstructure design of heavy drill tools should be as follows: high carbon martensite with high hardness and wear resistance at the surface,mixed microstructure of martensite and lower bainite at the transition zone,ductile bainite at the center and carburized layer with smoothly transitional microstructures and properties.In this paper,the service condition and performance requirements of each part of the heavy drill tool were concluded. The failure way of heavy drill tool at present and the comparison of the microstructures and properties of the drill tools at home and abroad were both introduced. In addition,the key factors to control the microstructure and property of the steel for heavy drill tool were analyzed. At last,the conclusion and expectation were made to fulfill the systematic control of the microstructure and property of the steel for heavy drill tool.
引文
1 Hu M,Dong X Y.Rock Drilling Machines and Pneumatic Tools,2009(2),26(in Chinese).胡铭,董鑫业.凿岩机械气动工具,2009(2),26.
    2 Hong D L,Gu T H,Xu S G,et al.Drill steel and drill tool,Metallurgical Industry Press,China,2000(in Chinese).洪达灵,顾太和,徐曙光,等.钎钢与钎具,冶金工业出版社,2000.
    3 Xu B,Tang W L,Lu Y X.Mining&Processing Equipment,2010,38(24),1(in Chinese).徐斌,唐文龙,鲁玉祥.矿山机械,2010,38(24),1.
    4 Hu M,Dong X Y.Rock Drilling Machines and Pneumatic Tools,2015(1),7(in Chinese).胡铭,董鑫业.凿岩机械气动工具,2015(1),7.
    5 Zhang H M.Technological Development of Enterprise,2013,32(2),168(in Chinese).张厚明.企业技术开发,2013,32(2),168.
    6 Zhang J G.Modern Machinery,2013(6),28(in Chinese).张金刚.现代机械,2013(6),28.
    7 Hu M,Dong X Y.Rock Drilling Machines and Pneumatic Tools,2010(1),37(in Chinese).胡铭,董鑫业.凿岩机械气动工具,2010(1),37.
    8周爱民.第十四届全国钎钢钎具年会.井冈山,2008,pp.10.
    9 Dong X Y,Li X Q.Rock Drilling Machines and Pneumatic Tools,1993(3),32(in Chinese).董鑫业,李秀清.凿岩机械气动工具,1993(3),32.
    10 Zhang H B,Huang L.Rock Drilling Machines and Pneumatic Tools,1992(3),22(in Chinese).张汉斌,黄澜.凿岩机械气动工具,1992(3),22.
    11 Huang H.Rock Drilling Machines and Pneumatic Tools,1991(2),28(in Chinese).黄虹.凿岩机械气动工具,1991(2),28.
    12 Krupp U,Düber O,Christ H J,et al.Materials Science and Engineering A,2007,462(1-2),174.
    13 Zhao R H.Bengang Technology,1996(3),41(in Chinese).赵瑞环.本钢技术,1996(3),41.
    14 Zhang G J,Ye L Y,Zhao Z H.Rock Drilling Machines and Pneumatic Tools,2004(1),50(in Chinese).张国榉,叶凌云,赵钟会.凿岩机械气动工具,2004(1),50.
    15 Peng J,Ou M J,Long Q.Journal of Guizhou University(Natural Sciences),2009,28(6),43(in Chinese).彭俊,欧梅桂,龙潜.贵州大学学报(自然科学版),2009,28(6),43.
    16 Tezcan S.Engineering Failure Analysis,2006,13(7),1108.
    17 Osman A,Ahmet C C,James P,et al.Surface&Coatings Technology,2007,201(15),5979.
    18 Wang C,Li Q.Gansu Metallurgy,2008,60(6),22(in Chinese).王晨,李琦.甘肃冶金,2008,60(6),22.
    19 Wang Y H,Cheng J Q,Liu Z X.Foundry Technology,2005,26(12),1109(in Chinese).王元辉,程巨强,刘志学.铸造技术,2005,26(12),1109.
    20 Ejerhed J,From M,Fattah A,et al.Heat resistant steel alloys:Atlas Copco.Bachelor’s Thesis,Uppsala University,Sweden,2015.
    21 Li B X.Rock Drilling Machines and Pneumatic Tools,1999(2),55(in Chinese).黎炳雄.凿岩机械气动工具,1999(2),55.
    22 Chen L.Rock Drilling Machines and Pneumatic Tools,2000(4),34(in Chinese).陈琳.凿岩机械气动工具,2000(4),34.
    23 Chen R J,Xu J J.Hot Working Technology,2008,37(20),96(in Chinese).陈儒军,徐家军.热加工工艺,2008,37(20),96.
    24 Li Y,Xu N,Wu X,et al.Engineering Failure Analysis,2012,20,35.
    25 Chaijaruwanich A,Thongthip C.International Journal of Mechanical Engineering and Robotics Research,2016,5(4),251.
    26 Zhao T L,Liu Z Y,Du C W,et al.The Open Materials Science Journal,2016,10(1),8.
    27 Zhu H W,Liu Y Z,Zhou L Y,et al.Journal of University of Science and Technology Beijing,2013,35(5),613(in Chinese).朱洪武,刘雅政,周乐育,等.北京科技大学学报,2013,35(5),613.
    28 Zhu H W,Liu Y Z,Zhou L Y,et al.International Journal of Minerals,Metallurgy and Materials,2012,19(5),421.
    29 Jiang B,Dai G Y,Yan Y M,et al.Materials Review A:Review Papers,2017,31(4),70(in Chinese).蒋波,戴光咏,闫永明,等.材料导报:综述篇,2017,31(4),70.
    30 Yan Y M,Liu Y Z,Zhou L Y,et al.Materials Science and Technology,2013,21(5),102(in Chinese).闫永明,刘雅政,周乐育,等.材料科学与工艺,2013,21(5),102.
    31 Deldar S,Mirzadeh H,Parsa M H.Engineering Failure Analysis,2016,68,132.
    32 Zhu H W,Liu Y Z,Xu S,et al.Journal of University of Science and Technology Beijing,2013,35(3),312(in Chinese).朱洪武,刘雅政,徐盛,等.北京科技大学学报,2013,35(3),312.
    33 Xu S,Liu Y Z,Zhou L Y,et al.Transactions of Materials and Heat Treatment,2014,35(1),146(in Chinese).徐盛,刘雅政,周乐育,等.材料热处理学报,2014,35(1),146.
    34 Huang B,Zhu H W,Yang Z,et al.Transactions of Materials and Heat Treatment,2013,34(7),136(in Chinese).黄斌,朱洪武,杨忠,等.材料热处理学报,2013,34(7),136.
    35 He Z G.Heat Treatment,2007,22(1),60(in Chinese).何祝根.热处理,2007,22(1),60.
    36 Wada T,Wada H,Elliott J F.Metallurgical and Materials,1972,3(11),2865.
    37 Gan Y C.Transactions of Metal Heat Treatment,1998,19(2),56(in Chinese).甘悦成.金属热处理学报,1998,19(2),56.
    38 Wang H J.Heat Treatment of Metals,1992(10),12(in Chinese).王慧君.金属热处理,1992(10),12.
    39 Li B X.Rock Drilling Machines and Pneumatic Tools,2009(4),51(in Chinese).黎炳雄.凿岩机械气动工具,2009(4),51.
    40 Ye L Y,Li Z A.Rock Drilling Machines and Pneumatic Tools,1999(3),4(in Chinese).叶凌云,李宗安.凿岩机械气动工具,1999(3),4.
    41 Hong Z S,Yin F C.Mining&Processing Equipment,1995(3),25(in Chinese).洪振声,尹付成.矿山机械,1995(3),25.
    42 Guan L,Chen H Z,Zheng C W.Bearing,2001(10),19(in Chinese).关力,陈卉珍,郑从伟.轴承,2001(10),19.
    43 Yan Y M,Liu Y Z,Zhou L Y,et al.Transactions of Materials and Heat Treatment,2014,35(2),110(in Chinese).闫永明,刘雅政,周乐育,等.材料热处理学报,2014,35(2),110.
    44 Dhua S K,Ray A,Sarma D S.Materials Science and Engineering A,2001,318(1-2),197.
    45 Cheng J Q,Liu Z X,Wang Y H.Heat Treatment of Metals,2008,33(5),72(in Chinese).程巨强,刘志学,王元辉.金属热处理,2008,33(5),72.
    46 Zou D,Ying H,Zhang W,et al.Journal of Iron and Steel Research,International,2010,17(8),50.
    47 Mayer S,Leitner H,Scheu C,et al.Steel Research International,2009,80(1),89.
    48 Preciado M,Bravo P M,Alegre J M.Journal of Materials Processing Technology,2006,176(1-3),41.
    49 Jiang B,Mei Z,Zhou L,et al.Materials Science and Engineering A,2016,675,361.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700