用户名: 密码: 验证码:
红景天苷对链尿佐菌素诱导的糖尿病肾病大鼠肾间质纤维化的改善作用及机制研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects and mechanism of salidroside on streptozotocin-induced mode rats of diabetic nephropathy
  • 作者:冷伟 ; 陈明霞 ; 刘春莹 ; 尚乘
  • 英文作者:Leng Wei;Chen Mingxia;Liu Chunying;Shang Cheng;The First Clinical Medical College of Shaanxi University of Traditional Chinese Medicine;Shaanxi University of Traditional Chinese Medicine;Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine;
  • 关键词:肾纤维化 ; 糖尿病肾病 ; 上皮间质转化 ; TGF-β1/Smad通路 ; 红景天
  • 英文关键词:renal fibrosis;;diabetic nephropathy;;epithelial-mesenchymal transition;;TGF-β1/Smad pathway;;salidroside
  • 中文刊名:WSYJ
  • 英文刊名:Journal of Hygiene Research
  • 机构:陕西中医药大学第一临床医学院;陕西中医药大学;陕西中医药大学附属医院;
  • 出版日期:2019-05-21
  • 出版单位:卫生研究
  • 年:2019
  • 期:v.48
  • 基金:陕西省自然科学基础研究计划(青年)(No.2018JQ8061)
  • 语种:中文;
  • 页:WSYJ201903003
  • 页数:8
  • CN:03
  • ISSN:11-2158/R
  • 分类号:27-34
摘要
目的探究红景天苷(salidroside, SAL)对糖尿病肾病(diabetic nephropathy,DN)大鼠肾纤维化的改善作用及其机制。方法将60只雄性SD大鼠随机分为对照组、糖尿病肾病模型组、红景天苷低中高剂量干预组,采用链尿佐菌素(streptozotocin, STZ)辅以摘除右肾的方法建立大鼠糖尿病肾病模型,红景天苷组大鼠分别灌胃50、100、200 mg/kg红景天苷。12周后摘取肾脏,HE染色检测肾脏病理损伤;试剂盒检测尿蛋白、尿肌酐(urine creatine, Ucr),血清尿素氮(blood urea nitrogen, BUN)及丙二醛(malondialdehyde, MDA)、超氧化物歧化酶(superoxide dismutase, SOD)和谷胱甘肽过氧化物酶(glutathione peroxidase, GSH-Px)的浓度;免疫印迹检测Ⅳ型胶原蛋白(collagenⅣ)、纤连蛋白(fibronectin)、E-钙黏蛋白(E-cadherin)、α-平滑肌肌动蛋白(α-smooth muscle actin,α-SMA)、N-钙黏蛋白(N-cadherin)、Smad2、Smad3、磷酸化-Smad2 (phosphorylated-Smad2, p-Smad2)、p-Smad3和转化生长因子-β1 (transforming growth factor-β1,TGF-β1)的表达。结果与对照组比较,模型组大鼠肾损伤加重,尿白蛋白、Ucr和BUN浓度明显升高,肾组织凋亡细胞和caspase-3阳性细胞显著增多,差异均有统计学意义(P<0.01);与模型组比较,100和200 mg/kg红景天苷组肾脏损伤明显减轻,尿白蛋白、Ucr和BUN浓度显著降低,肾组织凋亡细胞和caspase-3阳性细胞明显减少,差异均有统计学意义(P<0.05或P<0.01)。50 mg/kg红景天苷能显著升高糖尿病肾病模型大鼠SOD浓度,100和200 mg/kg红景天苷能显著升高糖尿病肾病模型大鼠SOD和GSH-Px浓度并降低MDA浓度;同时,100和200 mg/kg红景天苷还能明显抑制糖尿病肾病模型大鼠肾组织collagenⅣ、纤连蛋白、α-SMA和N-cadherin的表达,诱导E-cadherin表达;此外,100和200 mg/kg红景天苷可显著降低糖尿病肾病模型大鼠p-Smad2/Smad2、p-Smad3/Smad3的比值和TGF-β1的表达水平,差异均有统计学意义(P<0.05或P<0.01)。结论红景天苷能抑制链尿佐菌素诱导的糖尿病肾病模型大鼠肾纤维化,作用机制可能与抑制TGF-β1/Smad通路有关。
        OBJECTIVE To investigate the effects and mechanism of salidroside(SAL) on model rats of diabetic nephropathy(DN). METHODS Rats were divided into control, model, SAL(50 mg/kg), SAL(100 mg/kg) and SAL(200 mg/kg) groups. The rats beside in control group were injected with streptozotocin(STZ) combined with right nephrectomy. And rats in SAL(50, 100, 200 mg/kg) groups were received gavage with SAL(50, 100, 200 mg/kg). After 12 weeks, rats were sacrificed and kidneys were collected. HE staining was performed for renal injury, the concentrations of urine protein, urine creatine(Ucr), blood urea nitrogen(BUN), malondialdehyde(MDA), superoxide dismutase(SOD) and glutathione peroxidase(GSH-Px) were measured by kits. Western blot was used to measure the protein levels of Collagen Ⅳ, fibronectin, E-cadherin, α-smooth muscle actin(α-SMA), N-cadherin, Smad2、Smad3, phosphorylated-Smad2(p-Smad2), p-Smad3 and transforming growth factor-β1(TGF-β1). RESULTS Compared with control group, the renal injury of rats in model group was aggravated, the concentrations of urine protein, Ucr and BUN were elevated significantly, the apoptosis cells and positive cells of caspase-3 were increased; compared with model group, the renal injury of rats in SAL(100, 200 mg/kg) groups were alleviated markedly, the concentrations of urine protein, Ucr and BUN were reduced, the apoptosis cells and positive cells of caspase-3 were decreased notably. SAL(50 mg/kg) increased the concentration of SOD in DN model rats, SAL(100, 200 mg/kg) increased the concentrations of SOD and GSH-Px, decreased the level of MDA. Meanwhile, the inhibition of collagen Ⅳ, fibronrctin, α-SMA, and N-cadherin and the induction of E-cadherin in DN rats were induced by SAL(100, 200 mg/kg). In addition, SAL(100, 200 mg/kg) reduced the ratio of p-Smad2/Smad2, p-Smad3/Smad3 and the level of TGF-β1(P<0.05 or P<0.01). CONCLUSION SAL can inhibit renal fibrosis of STZ-induced DN model rats, and the mechanism may be related to inhibition of TGF-β1/Smad pathway.
引文
[1] SUTARIYA B,SARAF M.Betanin,isolated from fruits of opuntia elatior mill attenuates renal fibrosis in diabetic rats through regulating oxidative stress and TGF-β pathway[J].J Ethnopharmacol,2017,198:432-443.
    [2] ZHANG X,GUO K,XIA F,et al.FGF23C-tail improves diabetic nephropathy by attenuating renal fibrosis and inflammation[J].BMC Biotechnol,2018,18(1):33-41.
    [3] FORBES J M,COOPER M E.Mechanisms of diabetic complications[J].Physiol Rev,2013,93(1):137-188.
    [4] LU Q,JI X J,ZHOU Y X,et al.Quercetin inhibits the mTORC1/p70S6K signaling-mediated renal tubular epithelial-mesenchymal transition and renal fibrosis in diabetic nephropathy[J].Pharmacolog Res,2015,99:237-247.
    [5] SUTARIYA B,JHONSA D,SARAF M N.TGF-β:the connecting link between nephropathy and fibrosis[J].Immunopharmacol Immunotoxicol,2016,38(1):39-49.
    [6] LIU L,WANG Y,RUI Y,et al.Oxymatrine inhibits renal tubular EMT induced by high glucose via upregulation of SnoN and inhibition of TGF-β1/Smad signaling pathway[J].PloS One,2016,11(3):e0151986.
    [7] MARIAPPAN M M.Signaling mechanisms in the regulation of renal matrix metabolism in diabetes[J].J Diabet Res,2012,2012:749812.
    [8] DéCIGA-CAMPOS M,GONZáLEZ-TRUJANO M E,VENTURA-MARTíNEZ R,et al.Antihyperalgesic activity of rhodiola rosea in a diabetic rat model[J].Drug Dev Res,2016,77(1):29-36.
    [9] ZHANG X R,FU X J,ZHU D S,et al.Salidroside-regulated lipid metabolism with down-regulation of miR-370 in type 2 diabetic mice[J].Eur J Pharmacol,2016,779:46-52.
    [10] UIL M,SCANTLEBERY A,BUTTER L M,et al.Combining streptozotocin and unilateral nephrectomy is an effective method for inducing experimental diabetic nephropathy in the ‘resistant’ C57Bl/6J mouse strain[J].Scientif Rep,2018,8(1):5542.
    [11] WANG S,ZHAO X,YANG S,et al.Salidroside alleviates high glucose-induced oxidative stress and extracellular matrix accumulation in rat glomerular mesangial cells by the TXNIP-NLRP3 inflammasome pathway[J].Chem Biol Interact,2017,278:48-53.
    [12] ZHANG H,YANG Y,WANG Y,et al.Renal-protective effect of thalidomide in streptozotocin-induced diabetic rats through anti-inflammatory pathway[J].Drug Des Devel Ther,2018,12:89-98.
    [13] HEWITSON T D.Renal tubulointerstitial fibrosis:common but never simple[J].Am J Physiol Renal Physiol,2009,296(6):1239-1244.
    [14] YOON J J,LEE Y J,NAMGUNG S,et al.Samchuleum attenuates diabetic renal injury through the regulation of TGF-β/Smad signaling in human renal mesangial cells[J].Mol Med Rep,2018,17(2):3099-3108.
    [15] TAN A L,FORBES J M,COOPER M E.AGE,RAGE,and ROS in diabetic nephropathy[J].Semin Nephrol,2007,27(2):130-143.
    [16] STIEGER N,WORTHMANN K,TENG B,et al.Impact of high glucose and transforming growth factor-β,on bioenergetic profiles in podocytes[J].Metabolism,2012,61(8):1073-1086.
    [17] XU L,SHEN P,BI Y,et al.Danshen injection ameliorates STZ-induced diabetic nephropathy in association with suppression of oxidative stress,pro-inflammatory factors and fibrosis[J].Int Immunopharmacol,2016,38:385-394.
    [18] HUA L,YING L,TAO Z,et al.Salidroside reduces high-glucose-induced podocyte apoptosis and oxidative stress via upregulating heme oxygenase-1 (ho-1) expression[J].Med Sci Monit,2017,23:4067-4076.
    [19] FISCHER C,DEININGER N,WOLF G,et al.CERA attenuates kidney fibrogenesis in the db/db mouse by influencing the renal myofibroblast generation[J].J Clin Med,2018,7(2):15.
    [20] ZHANG M,YAN Z,BU L,et al.Rapeseed protein-derived antioxidant peptide RAP alleviates renal fibrosis through MAPK/NF-κB signaling pathways in diabetic nephropathy[J].Drug Des Devel Ther,2018,12:1255-1268.
    [21] YIN D,YAO W,CHEN S,et al.Salidroside,the main active compound of Rhodiola plants,inhibits high glucose-induced mesangial cell proliferation[J].Planta Med,2009,75(11):1191-1195.
    [22] WANG J Y,GAO Y B,ZHANG N,et al.miR-21 overexpression enhances TGF-β1-induced epithelial-to-mesenchymal transition by target smad7 and aggravates renal damage in diabetic nephropathy[J].Mol Cell Endocrinol,2014,392(1/2):163-172.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700