用户名: 密码: 验证码:
埋地式无线传感器的磁感应通信天线模型
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Magnetic induction antenna model for buried wireless sensor
  • 作者:董玉莹 ; 郝建军 ; 牟永飞
  • 英文作者:DONG Yu-ying;HAO Jian-jun;MOU Yong-fei;College of Electronic and Information Engineering,Shandong University of Science and Technology;
  • 关键词:磁感应通信 ; 超材料 ; 铁氧体 ; 埋地式无线传感器
  • 英文关键词:megnetic induction communication;;metamaterial;;ferrite;;buried wireless sensor
  • 中文刊名:XKXB
  • 英文刊名:Journal of Xi'an University of Science and Technology
  • 机构:山东科技大学电子信息工程学院;
  • 出版日期:2019-05-31
  • 出版单位:西安科技大学学报
  • 年:2019
  • 期:v.39;No.167
  • 基金:国家自然科学基金(61471224);; 山东省自然科学基金(ZR2014JL044)
  • 语种:中文;
  • 页:XKXB201903020
  • 页数:7
  • CN:03
  • ISSN:61-1434/N
  • 分类号:146-152
摘要
磁感应通信方式由于其传播特性不受介质电学特性影响、无多径效应、天线尺寸小等优点,非常适合在地层介质中或水下环境传输信号使用。然而其在近场衰减快的特点,也限制了传输距离。为增加通信距离,在Zhi Sun超材料天线模型的基础上,提出了一种改进的小型超材料天线模型,即在螺旋线圈内部增加铁氧体棒,随后又对球形超材料壳内用弱磁材料进行了填充。用Comsol对此模型进行了仿真,并比较了大半径线圈模型、大半径铁氧体模型、小半径超材料模型以及改进的小半径超材料模型在不同的填充物条件下接收端天线感应的磁场强度。仿真结果表明相同传播距离条件下,改进的小半径超材料天线方案的磁通信系统的接收端天线处的磁场强度最高;如果只对接收磁天线超材料壳内加填充材料而发送端天线壳内不加填充材料的情况下,改进的小型超材料天线模型的接收天线处耦合磁场强度相比大半径的线圈模型时接收天线的磁耦合强度提高了约20 dB.
        Due to its advantages of being immune to propagation medium's electrical characteristics and multi-path effect with small-sized antenna, magnetic induction communications are suitable for signal transmission in underground or underwater. However, fast propagation attenuation in near field limits its transmission distance. Aimed at increasing its communication range, an improved antenna model based on metamaterials, i.e., a model with a coil wound on ferrite rod in spiral is proposed. And further spherical metamaterial shell is filled with weak-magnetic material. The model is simulated using Comsol. The magnetic fields induced by the large radius coil model, the large radius coil with ferrite rod model, the small radius metamaterial model and the improved small radius metamaterial model with different fillings compared respectively. Simulation results show that the magnetic field intensity induced by the improved small radius metamaterial antenna model is the highest among aforementioned 4 models. And when the receiver antenna are filled with the weak-magnetic materials while the sender antenna filled nothing, the magnetic field intensity in receiver end induced by the improved small-sized metamaterial antenna model is enhanced by about 20 dB of compared to that of the large radius coil antenna.
引文
[1] 牛超,施龙青,肖乐乐,等.2001—2013年煤矿生产事故分类研究[J].煤矿安全,2015,46(3):208-211.NIU Chao,SHI Long-qing,XIAO Le-le,et al.Study on accidents classification of coal mine from 2001 to 2013[J].Safety in Coal Mines,2015,46(3):208-211.
    [2] 孙继平.煤矿安全生产监控与通信技术[J].煤炭学报,2010,35(11):1925-1929.SUN Ji-ping.Technologies of monitoring and communication in the coal mine[J].Journal of China Coal Society,2010,35(11):1925-1929.
    [3] 郑学召.矿井救援无线多媒体通信关键技术研究[D].西安:西安科技大学,2013.ZHENG Xue-zhao.Research on key technology of wireless multimedia communication for mine rescue[D].Xi’an:Xi’an University of Science and Technology,2013.
    [4] 王伟峰,侯媛彬,李珍宝,等.煤岩介质中无线通信频率及衰减机制研究[J].西安科技大学学报,2016,36(4):577-582.WANG Wei-feng,HOU Yuan-bin,LI Zhen-bao,et al.Radio frequency and attenuation mechanism in coal and rock medium[J].Journal of Xi’an University of Science and Technology,2016,36(4):577-582.
    [5] Yan L,Waynert J A,Sunderman C.Measurements and modeling of through-the-earth communications for coal mines[C]//IEEE Industry Applications Society Annual Meeting,2012,12:1-6.
    [6] Akyildiz I F,Stuntebeck E P.Wireless underground sensor networks:research challenges[J].Ad Hoc Networks Journal(Elsevier),2006(7):669-686.
    [7] 孙彦景,徐胜,施文娟,等.无线地下磁感应通信系统研究与实现[J].传感技术学报,2017,30(6):904-908.SUN Yan-jing,XU Sheng,SHI Wen-juan,et al.Analysis and implementation of magnetic induction wireless underground communication system[J].Chinese Journal of Sensors and Actuators,2017,30(6):904-908.
    [8] Guo H,Sun Z.Channel and energy modeling for self-contained wireless sensor networks in oil reservoirs[J].IEEE Transactions on Wireless Communications,2014,13(4):2258-2269.
    [9] Gulbahar B,Akan O B.A communicatiion theoretical modeling and analysis of underwater magneto-inductive wireless channels[J].IEEE Transactions on Wirelss Communications,2012,11(9):3326-3334.
    [10] 郝建军,孙晓晨.几种透地通信技术的分析与对比[J].湖南科技大学学报(自然科学版),2014,29(1):59-63.HAO Jian-jun,SUN Xiao-chen.Analysis and comparison of several through-the-earth communication technologies for mining[J].Journal of Hunan University of Science & Technology(Natural Science Edition),2014,29(1):59-63.
    [11] 陈二虎.矿井透地无线通信系统的研究与设计[D].西安:西安电子科技大学,2012.CHEN Er-hu.Research and design of mine through the earth wireless communication system[D].Xi’an:Xidian University,2012.
    [12] Li L,Vuran M C,Akyildiz I F.Characteristics of underground channel for wireless underground sensor networks[C]//Proceedings of the Sixth Annual Mediterranean Ad Hoc Networking WorkShop,Corfu,2007:92-99.
    [13] Tan X,Sun Z,Akyildiz I F.Wireless underground sensor networks:MI-based communication systems for underground applications[J].IEEE Antennas &Propagation Magazine,2015,57(4):74-78.
    [14] Akyildiz I F,Sun Z,Vuran M C.Signal propagation techniques for wireless underground communication networks[J].Physical Communication,2009,2(3):67-183.
    [15] 李波,郝杰,李开放,等.采用波导技术的地下传感网通信信道建模[J].西安科技大学学报,2018,38(6):1036-1040.LI Bo,HAO Jie,LI Kai-fang,et al.Communication channel modeling of underground sensing network using waveguide technology[J].Journal of Xi’an University of Science and Technology,2018,38(6):1036-1040.
    [16] Sun Z,Akyildiz I F.Magnetic induction communication for wireless underground sensor networks[J].IEEE Transcations on Antennas and Propagation,2010,58(7):2426-2435.
    [17] Domingo M C.Magnetic induction for underwater wireless communication networks[J].IEEE Transcations on Antennas & Propagation,2012,60(6):2929-2939.
    [18] Bae S,Hong Y K,Lee J.Pulsed ferrite magnetic field generator for through-the-earth communication systems for disaster situation in mines[J].Journal of Magnetics,2013,18(1):43-49.
    [19] Guo H Z,Sun Z,Sun J B,et al.M2I:channel modeling for metamaterial-enhanced magnetic induction communications[J].IEEE Transcations on Antennas & Propagation,2015,63(11):5072-5087.
    [20] Sharma P,Meena R S,Bhatia D.Analytical channel model for double layer metamaterial-improved magnetic induction communication[C]//IEEE International Conference on Advances in Computing,Communications and Informatics,2017:618-622.
    [21] 吕建红.电磁超材料的电磁特性及其基于光学变换理论的应用[D].武汉:华中科技大学,2010.LV Jian-hong.The electromagnetic characteristics of electromagnetic metamaterials and its application based on optical transformation[D].Wuhan:Huazhong University of Science & Technology,2010.
    [22] 李扬,刘传宝,周济,等.超材料隐身理论应用于多物理场的研究进展[J].中国材料进展,2019,38(1):30-40.LI Yang,LIU Chuan-bao,ZHOU Ji,et al.Progress of metamaterial cloaking in multiple physical fields[J].Materials China,2019,38(1):30-40.
    [23] Pendry J B,Holden A J,Stewart W j,et al.Extremely low frequency plasmons in metallic mesostructure[J].Physical Review Letters,1996,76(20):4773-4776.
    [24] Pendry J B,Holden A.J,Robbins D J,et al.Low frequency plasmons in thin-wire structures[J].Journal of Physics Condensed Matter,1998(10):4785-4809.
    [25] 刘凌云,刘力鑫,张治蓝,等.电磁超材料增强无线电能传输效率研究[J].湖北工业大学学报,2018,33(1):1-4.LIU Ling-yun,LIU Li-xin,ZHANG Zhi-lan,et al.Transmission efficiency of electromagnetic metamaterial enhancing wireless power transmission system[J].Journal of Hubei University of Technology,2018,33(1):1-4.
    [26] 谢璐,杨玉华,单彦虎,等.应用于无线地下传感器网络的磁通信电路分析[J].仪表技术与传感器,2016(8):123-126.XIE Lu,YANG Yu-hua,SHAN Yan-hu,et al.Analysis of magnetic induction communication circuit for wireless underground sensor network[J].Instrument Technology and Sensor,2016(8):123-126.
    [27] 马静.地表下近场磁感通信传播特性研究[D].北京:北京科技大学,2016.MA Jing.Research on underground near-field magneto-inductive propagation characteristics[D].Beijing:University of Science & Technology Beijing,2016.
    [28] 王鹏,陶晋宜,贾雨龙.基于FEKO无线透地通信天线电磁特性的探究[J].微波学报,2016,32(1):70-74.WANG Peng,TAO Jin-yi,JIA Yu-long.The exploration of antenna about electromagnetic properties of the wireless through-the-earth communication based on FEKO[J].Journal of Microwave,2016,32(1):70-74.
    [29] 马宁,王新刚,廖斌.基于铁氧体材料的小型螺旋天线的仿真设计[J].真空电子技术,2013(5):45-48.MA Ning,WANG Xin-gang,LIAO Bin.Simulation design of small size ferrite spiral antenna[J].Vacuum Electronics,2013(5):45-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700