用户名: 密码: 验证码:
稻田体系中铁的生物地球化学过程及铁同位素分馏机制研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Biogeochemical Process of Iron and Its Isotope Fractionation Mechanism in Paddy Field System: A Review
  • 作者:李芳柏 ; 李勇珠
  • 英文作者:LI Fangbai;LI Yongzhu;Guangdong Institute of Eco-Environmental Science & Technology;Guangzhou Institute of Geochemistry, Chinese Academy of Science;University of Chinese Academy of Sciences;
  • 关键词:稻田铁 ; 机理Ⅰ ; 机理Ⅱ ; 铁同位素
  • 英文关键词:iron in paddy field;;strategy Ⅰ;;strategy Ⅱ;;iron isotope
  • 中文刊名:TRYJ
  • 英文刊名:Ecology and Environmental Sciences
  • 机构:广东省生态环境技术研究所;中国科学院广州地球化学研究所;中国科学院大学;
  • 出版日期:2019-06-18
  • 出版单位:生态环境学报
  • 年:2019
  • 期:v.28
  • 基金:国家自然科学基金国际(地区)合作与交流项目(41420104007)
  • 语种:中文;
  • 页:TRYJ201906022
  • 页数:10
  • CN:06
  • ISSN:44-1661/X
  • 分类号:185-194
摘要
铁是地球上丰度排第四的元素,其地球化学行为作为稻田体系循环的重要组成部分而具有重大意义。铁也是植物维持正常生命活动的必需微量元素之一,参与众多生物代谢过程。十几年来,铁同位素方法在表生地球化学的应用得到了广泛关注,铁同位素方法已被广泛地用来追踪异化铁还原、亚铁的生物和非生物氧化以及吸附、沉淀等铁的生物地球化学过程。文章综述了水稻土铁同位素分馏特征及影响因素,以及水稻中铁吸收转运的分子生理机制和铁同位素分馏特征和机制。水稻土在发育过程中缺损轻铁,且不同的发育过程导致土壤中铁形态、价态的改变而会形成特有的分馏特征。植物铁同位素分馏效应的研究表明,植物吸收铁的机制不同,产生的铁同位素分馏程度呈现出显著的差异。当植物以机理I的方式,即通过将三价铁还原为二价铁再吸收铁时,植物优先吸收轻的铁同位素,且铁同位素在植物内部的分馏程度较大[-0.13‰-(-1.64‰)]。当植物通过机理II的方式,即通过螯合三价铁,再吸收至植物体内的过程,植物优先吸收重的铁同位素,且铁同位素的分馏程度较小(-0.11‰-0.17‰)。水稻铁同位素组成不同于典型的机理II植物,水稻富集轻铁,且铁同位素在水稻植株中存在较大分馏。这可能是因为水稻在根吸收铁的过程中同时采用机理I和机理II途径,且铁在水稻内的转运过程、配体改变及价态改变等都会导致铁的同位素分馏。铁同位素方法在揭示水稻对铁元素的吸收机制方面表现出巨大应用潜力。文章还分别对如何将铁同位素方法结合土壤-水稻体系的土壤发育背景,以及通过制样方法的改进、结合质量平衡计算、动力学分馏、综合多个表征手段等方式来解释水稻铁同位素机制进行了讨论和展望。
        Iron is the fourth abundant element on the earth, and its geochemical behavior is of great significance as an important part of the element circulation of paddy field system. Iron is also one of the essential trace elements in the normal life process of plants, and participates in many biological metabolic processes. Over the past decade, the application of iron isotope method in supergene geochemistry has received extensive attention. Iron isotope method has been widely used to investigate the biogeochemical processes of iron, such as dissimilatory iron reduction, ferrous and abiotic oxidation of ferrous iron, and adsorption, precipitation and other processes. In this paper, the characteristics and influencing factors of iron isotope fractionation in paddy soils, the molecular physiological mechanism of iron absorption and transport in rice and the characteristics and mechanisms of iron isotope fractionation are reviewed. Paddy soils are deficient in light iron during development, and different developmental processes lead to changes in iron forms and valences in the soils, thus forming unique fractionation characteristics. In previous study of iron isotope fractionation during soil-plant systems, iron uptake in plants with different mechanisms for iron uptake showed distinguish magnitude and behavior of iron isotope fractionation. In the plant of Strategy I, Fe(III) is reduced into Fe(II) and it is uptaken into the plant. The Fe isotope composition becomes light and magnitude of fractionation is large inside the plant [-0.13‰-(-1.64‰)]. In the plant of Strategy II,Fe(III) is transported into the plant by process of chelation. The Fe isotope composition becomes heavy and magnitude of fractionation is small inside the plant(-0.11‰-0.17‰). The iron isotope composition of rice is different from that of typical mechanism II plants.Rice is rich in light iron, and magnitude of Fe isotope fractionation is large inside the rice plants.This may be due to the simultaneous use of strategy I and strategy II pathways during iron uptake process by rice roots, and iron transport in rice, ligand changes and valence changes will lead to iron isotope fractionation. Iron isotope method shows great potential in revealing the mechanism of iron transport in soil-rice systems. This review also discussed and prospected how to combine the iron isotope method with the soil development background of the soil-rice system, and how to explain the iron isotope mechanism of rice by improving the sample preparation method, combining with mass balance calculation, dynamic fractionation, and multiple characterization methods.
引文
AOYAMA T,KOBAYASHI T,TAKAHASHI M,et al.,2009.OsYSL18 is a rice iron(III)-deoxymugineic acid transporter specifically expressed in reproductive organs and phloem of lamina joints[J].Plant Molecular Biology,70(6):681-692.
    ARIGA T,HAZAMA K,YANAGISAWA S,et al.,2014.Chemical forms of iron in xylem sap from graminaceous and non-graminaceous plants[J].Soil Science and Plant Nutrition,60(4):460-469.
    ARNOLD T,MARKOVIC T,KIRK G J D,et al.,2015.Iron and zinc isotope fractionation during uptake and translocation in rice(Oryza sativa)grown in oxic and anoxic soils[J].Comptes Rendus Geoscience,347(7-8):397-404.
    BALCI N,BULLEN T D,WITTE-LIEN K,et al.,2006.Iron isotope fractionation during microbially stimulated Fe(II)oxidation and Fe(III)precipitation[J].Geochimica et Cosmochimica Acta,70(3):622-639.
    BEARD B L,JOHNSON C M,SKULAN J L,et al.,2003.Application of Fe isotopes to tracing the geochemical and biological cycling of Fe[J].Chemical Geology,195(1-4):87-117.
    BENE?I,SCHREIBER K,RIPPERGER H,et al.,1983.Metal complex formation by nicotianamine,a possible phytosiderophore[J].Experientia,39(3):261-262.
    BRIAT J F,LOBR AUX S,1997.Iron transport and storage in plants[J].Trends in Plant Science,2(5):187-193.
    BUTLER I B,ARCHER C,VANCE D,et al.,2005.Fe isotope fractionation on FeS formation in ambient aqueous solution[J].Earth and Planetary Science Letters,236(1-2):430-442.
    CHANEY R L,1984.Diagnostic practices to identify iron deficiency in higher plants[J].Journal of Plant Nutrition,7(1-5):47-67.
    CHARLSON D V,SHOEMAKER R C,2006.Evolution of Iron Acquisition in Higher Plants[J].Journal of Plant Nutrition,29(6):1109-1125.
    CROAL L R,JOHNSON C M,BEARD B L,et al.,2004.Iron isotope fractionation by Fe(II)-oxidizing photoautotrophic bacteria 1[J].Geochimica Et Cosmochimica Acta,68(6):1227-1242.
    CROSBY H A,JOHNSON C M,AND E E R,et al.,2005.Coupled Fe(II)-Fe(III)Electron and Atom Exchange as a Mechanism for Fe Isotope Fractionation during Dissimilatory Iron Oxide Reduction[J].Environmental Science&Technology,39(17):6698-6704.
    CROSBY H A,RODEN E E,JOHNSON C M,et al.,2007.The mechanisms of iron isotope fractionation produced during dissimilatory Fe(III)reduction by Shewanella putrefaciens and Geobacter sulfurreducens[J].Geobiology,5(2):169-189.
    CURIE C,CASSIN G,COUCH D,et al.,2009.Metal movement within the plant:contribution of nicotianamine and yellow stripe 1-like transporters[J].Annals of Botany,103(1):1-11.
    DIDERIKSEN K,BAKER J A,STIPP S L S,2008.Equilibrium Fe isotope fractionation between inorganic aqueous Fe(III)and the siderophore complex,Fe(III)-desferrioxamine B[J].Earth and Planetary Science Letters,269(1-2):280-290.
    GARNIER J,GARNIER J M,VIEIRA C L,et al.,2017.Iron isotope fingerprints of redox and biogeochemical cycling in the soil-water-rice plant system of a paddy field[J].Science of the Total Environment,574:1622-1632.
    GUELKE M,VON BLANCKENBURG F,2007.Fractionation of stable iron isotopes in higher plants[J].Environmental Science&Technology,41(6):1896-1901.
    GUELKE M,VON BLANCKENBURG F,SCHOENBERG R,et al.,2010.Determining the stable Fe isotope signature of plant-available iron in soils[J].Chemical Geology,277(3-4):269-280.
    GUELKE-STELLING M,VON BLANCKENBURG F,2011.Fe isotope fractionation caused by translocation of iron during growth of bean and oat as models of strategy I and II plants[J].Plant and Soil,352(1-2):217-231.
    GUERINOT M L,YI Y,1994.Iron:Nutritious,Noxious,and Not Readily Available[J].Plant Physiology,104(3):815-820.
    HARRIS W R,SAMMONS R D,GRABIAK R C,2012.A speciation model of essential trace metal ions in phloem[J].Journal of Inorganic Biochemistry,116:140-150.
    HUANG L M,JIA X X,ZHANG G L,et al.,2018.Variations and controls of iron oxides and isotope compositions during paddy soil evolution over a millennial time scale[J].Chemical Geology,476:340-351.
    INOUE H,KOBAYASHI T,NOZOYE T,et al.,2009.Rice OsYSL15 Is an Iron-regulated Iron(III)-Deoxymugineic Acid Transporter Expressed in the Roots and Is Essential for Iron Uptake in Early Growth of the Seedlings[J].Journal of Biological Chemistry,284(6):3470-3479.
    INOUE H,TAKAHASHI M,KOBAYASHI T,et al.,2008.Identification and localisation of the rice nicotianamine aminotransferase gene OsNAAT1 expression suggests the site of phytosiderophore synthesis in rice[J].Plant Molecular Biology,66(1-2):193-203.
    ISHIMARU Y,KIM S,TSUKAMOTO T,et al.,2007.Mutational reconstructed ferric chelate reductase confers enhanced tolerance in rice to iron deficiency in calcareous soil[J].Proceedings of the National Academy of Sciences of the United States of America,104(18):7373-7378.
    ISHIMARU Y,SUZUKI M,TSUKAMOTO T,et al.,2006.Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+[J].The Plant journal:for cell and molecular biology,45(3):335-346.
    ISHIMARU Y,TAKAHASHI R,BASHIR K,et al.,2012.Characterizing the role of rice NRAMP5 in Manganese,Iron and Cadmium Transport[J].Scientific Reports,2:286.
    JOHNSON C M,BEARD B L,RODEN E E,2008.The iron isotope fingerprints of redox and biogeochemical cycling in the modern and ancient Earth[J].Annual Review of Earth and Planetary Sciences,36:457-493.
    KAKEI Y,ISHIMARU Y,KOBAYASHI T,et al.,2012.OsYSL16 plays a role in the allocation of iron[J].Plant Molecular Biology,79(6):583-594.
    KICZKA M,WIEDERHOLD J G,KRAEMER S M,et al.,2010.Iron Isotope Fractionation during Fe Uptake and Translocation in Alpine Plants[J].Environmental Science&Technology,44(16):6144-6150.
    KOIKE S,INOUE H,MIZUNO D,et al.,2004.OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem[J].The Plant journal:for cell and molecular biology,39(3):415-424.
    LEE S,AN G,2009a.Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice[J].Plant Cell and Environment,32(4):408-416.
    LEE S,CHIECKO J C,KIM S A,et al.,2009b.Disruption of OsYSL15leads to iron inefficiency in rice plants[J].Plant Physiology,150(2):786-800.
    LEE S,KIM Y-S,JEON U S,et al.,2012.Activation of Rice nicotianamine synthase 2(OsNAS2)enhances iron availability for biofortification[J].Molecules and Cells,33(3):269-275.
    LI S Z,ZHOU X J,CHEN J T,et al.,2018.Is there a strategy I iron uptake mechanism in maize?[J].Plant Signaling Behavior,13(4):e1161877.
    MARSCHNER H,ROMHELD V,KISSEL M,1986.Different strategies in higher plants in mobilization and uptake of iron[J].Journal of Plant Nutrition,9(3):695-713.
    MASUDA H,USUDA K,KOBAYASHI T,et al.,2009.Overexpression of the barley nicotianamine synthase gene HvNAS1 increases iron and zinc concentrations in rice grains[J].Rice,2(4):155-166.
    MI W,CAI J,TUO Y,et al.,2013.Distinguishable root plaque on root surface of Potamogeton crispus grown in two sediments with different nutrient status[J].Limnology,14(1):1-11.
    MORRISSEY J,GUERINOT M L.2010.Iron uptake and transport in plants:the good,the bad,and the ionome[J].Chemical Reviews,41(5):4553-4567
    MOYNIER F,FUJII T,WANG K,et al.,2013.Ab initio calculations of the Fe(II)and Fe(III)isotopic effects in citrates,nicotianamine,and phytosiderophore,and new Fe isotopic measurements in higher plants[J].Comptes Rendus Geoscience,345(5-6):230-240.
    NISHIYAMA R,KATO M,NAGATA S,et al.,2012.Identification of Zn-nicotianamine and Fe-2'-Deoxymugineic acid in the phloem sap from rice plants(Oryza sativa L.)[J].Plant&Cell Physioogy,53(2):381-390.
    NOZOYE T,NAGASAKA S,KOBAYASHI T,et al.,2011.Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants[J].Journal of Biological Chemistry,286(7):5446-5454.
    NOZOYE T,NAGASAKA S,KOBAYASHI T,et al.,2015.The phytosiderophore efflux transporter TOM2 is involved in metal transport in rice[J].The Journal of Biological Chemistry,290(46):27688-27699.
    R?MHELD V,2010.Different strategies for iron acquisition in higher plants[J].Physiologia Plantarum,70(2):231-234.
    ROMAIN G,BUTLER I B,ELLAM R M,2011.Abiotic pyrite formation produces a large Fe isotope fractionation[J].Science,332(6037):1548.
    SCHUTH S,HURRA J,M NKER C,et al.,2015.Redox-dependent fractionation of iron isotopes in suspensions of a groundwaterinfluenced soil[J].Chemical Geology,392(3):74-86.
    SEBASTIAN A,PRASAD M N,2016.Iron plaque decreases cadmium accumulation in Oryza sativa L.and serves as a source of iron[J].Plant Biology(Stuttg),18(6):1008-1015.
    SENOURA T,SAKASHITA E,KOBAYASHI T,et al.,2017.The iron-chelate transporter OsYSL9 plays a role in iron distribution in developing rice grains[J].Plant Molecular Biology,95(4-5):375-387.
    SEVERMANN S,JOHNSON C M,BEARD B L,et al.,2006.The effect of early diagenesis on the Fe isotope compositions of porewaters and authigenic minerals in continental margin sediments[J].Geochimica Et Cosmochimica Acta,70(8):2006-2022.
    SHRESTHA R K,ENGEL K,BECKER M,2015.Effect of transpiration on iron uptake and translocation in lowland rice[J].Journal of Plant Nutrition and Soil Science,178(3):365-369.
    TAKAHASHI R,ISHIMARU Y,SENOURA T,et al.,2011.The OsNRAMP1 iron transporter is involved in Cd accumulation in rice[J].Journal of Experimental Botany,62(14):4843-4850.
    UENO D,MA J F,2009.Secretion time of phytosiderophore differs in two perennial grasses and is controlled by temperature[J].Plant and Soil,323(1-2):335-341.
    VON WIREN N,KLAIR S,BANSAL S,et al.,1999.Nicotianamine chelates both Fe-III and Fe-II.Implications for metal transport in plants[J].Plant Physiology,119(3):1107-1114.
    WEBER G,VON WIREN N,HAYEN H,2008.Investigation of ascorbate-mediated iron release from ferric phytosiderophores in the presence of nicotianamine[J].Biometals,21(5):503-513.
    WELCH S A,BEARD B L,JOHNSON C M,et al.,2003.Kinetic and equilibrium Fe isotope fractionation between aqueous Fe(II)and Fe(III)[J].Geochimica Et Cosmochimica Acta,67(22):4231-4250.
    WIEDERHOLD J G,2015.Metal stable isotope signatures as tracers in environmental geochemistry[J].Environmental Science&Technology,49(5):2606-2624.
    WIEDERHOLD J G,KRAEMER S M,NADYA T,et al.,2006.Iron isotope fractionation during proton-promoted,ligand-controlled,and reductive dissolution of Goethite[J].Environmental Science&Technology,40(12):3787-3793.
    WIEDERHOLD J G,TEUTSCH N,KRAEMER S M,et al.,2007a.Iron Isotope Fractionation during Pedogenesis in Redoximorphic Soils[J].Soil Science Society of America Journal,71(6):1840.
    WIEDERHOLD J G,TEUTSCH N,KRAEMER S M,et al.,2007b.Iron isotope fractionation in oxic soils by mineral weathering and podzolization[J].Geochimica et Cosmochimica Acta,71(23):5821-5833.
    YOKOSHO K,YAMAJI N,MA J F,2016.OsFRDL1 expressed in nodes is required for distribution of iron to grains in rice[J].Journal of Experimental Botany,67(18):5485-5494.
    YOKOSHO K,YAMAJI N,UENO D,et al.,2009.OsFRDL1 is a citrate transporter required for efficient translocation of iron in rice[J].Plant Physiology,149(1):297-305.
    YONEYAMA T,GOSHO T,KATO M,et al.,2010.Xylem and phloem transport of Cd,Zn and Fe into the grains of rice plants(Oryza sativa L.)grown in continuously flooded Cd-contaminated soil[J].Soil Science and Plant Nutrition,56(3):445-453.
    YONEYAMA T,ISHIKAWA S,FUJIMAKI S,2015.Route and Regulation of Zinc,Cadmium,and Iron Transport in Rice Plants(Oryza sativa L.)during Vegetative Growth and Grain Filling:Metal Transporters,Metal Speciation,Grain Cd Reduction and Zn and Fe Biofortification[J].International Journal of Molecular Sciences,16(8):19111-19129.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700