用户名: 密码: 验证码:
电泳沉积制备TA有机复合涂层及其性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and Properties of TA Composite Coating by Electrodeposition
  • 作者:孟龙 ; 赵明昕 ; 潘凯 ; 朱叶 ; 魏玮 ; 李小杰 ; 刘晓亚
  • 英文作者:MENG Long;ZHAO Ming-xin;PAN Kai;ZHU Ye;WEI Wei;LI Xiao-jie;LIU Xiao-ya;School of Chemical and Material Engineering, Jiangnan University;
  • 关键词:阴极电泳沉积 ; 单宁酸 ; 纳米粒子 ; 复合涂层 ; 附着力 ; 防污
  • 英文关键词:cathodic electrodeposition;;tannic acid;;nanoparticles;;composite coating;;adhesion;;antifouling
  • 中文刊名:BMJS
  • 英文刊名:Surface Technology
  • 机构:江南大学化学与材料工程学院;
  • 出版日期:2019-05-20
  • 出版单位:表面技术
  • 年:2019
  • 期:v.48
  • 基金:国家自然科学基金(51573073);; 江苏省研究生科研创新计划项目(KYCX17_1431)~~
  • 语种:中文;
  • 页:BMJS201905035
  • 页数:7
  • CN:05
  • ISSN:50-1083/TG
  • 分类号:244-250
摘要
目的通过便捷的共混方式在聚合物涂层中引入单宁酸(TA)锚定涂层,并改善涂层性能,提供新颖、简单的水性聚合物涂层固定及增强方法。方法通过简单的溶解分散方式将TA混入聚合物自组装成的纳米粒子分散液中,并采用阴极电泳在裸钛表面制备TA复合涂层。通过扫描电子显微镜对涂层形貌进行分析。通过超景深显微镜粗糙度测定、铅笔硬度测试、划格法附着力测试、浸泡法等,分别评价NP-TA_x复合涂层的厚度、粗糙度、硬度、附着力、耐久性等性质。最后通过防污测试评价TA复合对聚合物涂层防污性能的影响。结果成功合成了一种两性离子型水性聚合物PIDS,并自组装成纳米粒子,粒子呈球形形貌,粒径约184.8 nm。将纳米粒子与TA混合后,成功通过阴极电泳技术在钛表面制备复合涂层,通过调节沉积电压和时间可以获得不同厚度及表面微结构的涂层表面,涂层制备简便可控。制备NP-TA_x复合涂层后,TA提高了涂层的成膜性,涂层表面结构变得更为平整。NP-TA_x复合涂层的附着力由NP的2级增加到0级,硬度由NP的HB上升为1H,稳定性也大幅提升。通过防污测试表明,TA复合的两性离子涂层对蛋白质和细菌仍具有良好的防污效果,表明TA复合不会影响涂层现有性质。结论 TA与水性聚合物纳米粒子复合制备涂层,可大大提升聚合物涂层综合性能,是一种新颖、简单而且有效的水性聚合物涂层固定及增强途径。
        The work aims to introduce tannic acid(TA) into the waterborne copolymer coating to anchor and improve coating properties by convenient mixing method so as to provide a novel and simple method of anchoring and reinforcing aqueous polymer coatings. TA was mixed into a self-assembled nanoparticle solution of the synthesized zwitterionic polymer by simple dissolution and dispersion method, and was deposited on bare titanium by cathodic electrodeposition to form TA composite coatings. The morphology of the coating was analyzed by SEM and the thickness, roughness, hardness, bond strength and durability of NP-TA_x composite coatings were evaluated by ultra-depth microscopy, pencil hardness test, cross-hatch test and immersion method. Finally, the effect of introduced TA on the antifouling performance of zwitterionic-based coating was evaluated by antifouling test. The zwitterionic-based polymer PIDS was successfully synthesized and self-assembled into nanoparticles with a spherical morphology and a particle size of about 184.8 nm. After nanoparticles were with TA, the composite coating was successfully prepared on titanium by cathodic electrophoresis. The different thicknesses and surface microstructures of composite coating could be obtained by adjusting the deposition voltage and time, which indicated that the preparation method was simple and controllable. After the preparation of NP-TA_x composite coating, TA improved the film formation of the coating, which made surface structure of composite coating more flat and uniform. The bond strength of coating increased from 2 to 0 level and the hardness increased from HB to 1 H. The stability of the coatings was also greatly increased. Subsequent, the results of antifouling test showed that the TA composite coating still had good antifouling effect against proteins and bacteria,which indicated that TA composite deposition would not affect the existing properties of coating. The composite deposition of TA with aqueous nanoparticles for constructing coating can effectively enhance the overall performance of the coating and is considered to be a novel, simple and effective way to anchor and enhance the coating.
引文
[1]李琪,高昌录,孙秀花.两性离子聚合物防污涂层研究进展[J].合成材料老化与应用,2018,47(3):94-99.LI Qi,GAO Chang-lu,SUN Xiu-hua.Research progress of zwitterionic polymer antifouling coatings[J].Synthetic materials aging and application,2018,47(3):94-99.
    [2]SCHLENOFF J B.Zwitteration:coating surfaces with zwitterionic functionality to reduce nonspecific adsorption[J].Langmuir,2014,30(32):9625-9636.
    [3]刘红艳,周健.两性离子聚合物的生物应用[J].化学进展,2012,24(11):2187-2197.LIU Hong-yan,ZHOU Jian.Biological applications of zwitterionic polymers[J].Progress in chemistry,2012,24(11):2187-2197.
    [4]SINGH P K,SINGH V K,SINGH M.Zwitterionic polyelectrolytes:A review[J].E-polymers,2007,7(1):1-35.
    [5]YANG W J,NEOH K G,KANG E T,et al.Polymer brush coatings for combating marine biofouling[J].Progress in polymer science,2014,39(5):1017-1042.
    [6]ALSWIELEH A M,CHENG N,CANTON I,et al.Zwitterionic Poly(amino acid methacrylate)Brushes[J].Journal of the American chemical society,2014,136(26):9404-9413.
    [7]XUAN F,LIU J.Preparation,characterization and application of zwitterionic polymers and membranes:Current developments and perspective[J].Polymer international,2009,58(12):1350-1361.
    [8]XU L Q,PRANANTYO D,NEOH K G,et al.Synthesis of catechol and zwitterion-bifunctionalized poly(ethylene glycol)for the construction of antifouling surfaces[J].Polymer chemistry,2016,7(2):493-501.
    [9]CHEN L,THERIEN-AUBIN H,WONG M C Y,et al.Improved antifouling properties of polymer membranes using a'layer-by-layer'mediated method[J].Journal of materials chemistry B,2013,1(41):5651-5658.
    [10]VAN-BUREN J P,ROBINSON W B.Formation of complexes between protein and tannic acid[J].Journal of agricultural and food chemistry,1969,17(4):772-777.
    [11]KIM S,GIM T,KANG S M.Versatile,tannic acidmediated surface PEGylation for marine antifouling applications[J].ACS applied materials&interfaces,2015,7(12):6412-6416.
    [12]TAKEMOTO Y,AJIRO H,AKASHI M.Hydrogenbonded multilayer films based on poly(N-vinylamide)derivatives and tannic acid[J].Langmuir,2015,31(24):6863-6869.
    [13]SHUKLA A,FANG J C,PURANAM S,et al.Hemostatic multilayer coatings[J].Advanced materials,2012,24(4):492-496.
    [14]XU G,PRANANTYO D,ZHANG B,et al.Tannic acid anchored layer-by-layer covalent deposition of parasin Ipeptide for antifouling and antimicrobial coatings[J].RSCadvances,2016,6(18):14809-14818.
    [15]石甜甜,孙家娣,朱叶,等.壳聚糖/单宁酸复合胶体粒子的制备及功能涂层研究[J].功能材料,2017,48(5):5042-5047.SHI Tian-tian,SUN Jia-di,ZHU Ye,et al.Multifunctional coatings fabricated from electrophoretic deposition of chitosan/tannic acid nanoparticles[J].Journal of functional materials,2017,48(5):5042-5047.
    [16]REN P F,YANG H C,LIANG H Q,et al.Highly stable,protein-resistant surfaces via the layer-by-layer assembly of poly(sulfobetaine methacrylate)and tannic acid[J].Langmuir,2015,31(21):5851-5858.
    [17]BSRA L,LIU M.A review on fundamentals and applications of electrophoretic deposition(EPD)[J].Progress in materials science,2007,52(1):1-61.
    [18]SUN J,LIU X,MENG L,et al.One-step electrodeposition of self-assembled colloidal particles:A novel strategy for biomedical coating[J].Langmuir,2014,30(37):11002-11010.
    [19]SUN J,ZHU Y,MENG L,et al.Electrophoretic deposition of colloidal particles on Mg with cytocompatibility,antibacterial performance,and corrosion resistance[J].Acta biomaterialia,2016,45:387-398.
    [20]MENG L,LI Y,PAN K,et al.Colloidal particle based electrodeposition coatings on NiTi alloy:Reduced releasing of nickel ions and improved biocompatibility[J].Materials letters,2018,230:228-231.
    [21]李冬冬,蔡超,杨萌,等.基于单宁酸的功能材料研究进展[J].高分子通报,2017(9):10-20.LI Dong-dong,CAI Chao,YANG Meng,et al.Progress in the application of tannic acid to functional materials[J].Chinese polymer bulletin,2017(9):10-20.
    [22]RIVERO S,GARCIA M A,PINOTTI A.Crosslinking capacity of tannic acid in plasticized chitosan films[J].Carbohydrate polymers,2010,82(2):270-276.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700