用户名: 密码: 验证码:
平缀管式钢管混凝土格构柱拟动力试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:PSEUDO-DYNAMIC TEST OF CFST LATTICE COLUMNS WITH FLAT LACING TUBES
  • 作者:袁辉辉 ; 吴庆雄 ; 陈宝春 ; 蔡慧雄
  • 英文作者:YUAN Hui-hui;WU Qing-xiong;CHEN Bao-chun;CAI Hui-xiong;Department of Civil Engineering,Fuzhou University;Fujian Key Laboratory of Engineering Structures;Fujian Key Laboratory of Civil Engineering Disaster Prevention;Fujian Communications Planning & Design Institute;
  • 关键词:钢管混凝土格构柱 ; 平缀管 ; 拟动力试验 ; 主余震 ; 抗震性能
  • 英文关键词:CFST lattice column;;flat lacing tube;;pseudo-dynamic test;;main-after shock;;seismic performance
  • 中文刊名:GCLX
  • 英文刊名:Engineering Mechanics
  • 机构:福州大学土木工程学院;工程结构福建省高校重点实验室;福建省土木工程多灾害防治重点实验室;福建省交通规划设计院;
  • 出版日期:2019-07-11
  • 出版单位:工程力学
  • 年:2019
  • 期:v.36
  • 基金:国家自然科学基金项目(51508104,51678154)
  • 语种:中文;
  • 页:GCLX201907010
  • 页数:12
  • CN:07
  • ISSN:11-2595/O3
  • 分类号:77-88
摘要
在平缀管式钢管混凝土格构柱拟静力试验研究的基础上,进行了2个1∶8缩尺模型的拟动力试验,分别采用2008年汶川大地震和1995年日本阪神大地震的地震动时程记录作为输入地震波,研究在不同强度地震和主余震作用下此类结构的变形、强度、刚度、耗能等抗震性能。研究结果表明:平缀管式钢管混凝土格构柱具有良好的抗震性能,在8度多遇、基本、罕遇、极罕遇地震作用下,结构处于弹性工作状态;在9度罕遇地震作用下,钢管混凝土柱肢发生屈服,结构进入弹塑性工作状态;随着地震动峰值加速度的增加,柱底钢管应变急剧增加,柱顶最大响应位移非线性增长;直至试验加载结束,柱肢底部塑性铰区域未形成屈服环,结构无明显破坏。主余震作用加剧了结构的累积损伤,结构的刚度退化现象比较明显,在经历1次9度罕遇主震和2次同等强度的余震作用后,结构弹性阶段刚度相比初始弹性刚度减小约50.0%,最大位移增大约41%。通过钢管混凝土格构柱在各地震工况下的强度与变形的验算,进一步表明此类结构具有足够的强度储备和良好的变形能力,在经历多次强震后仍能保持一定的承载能力,在我国高烈度地区的桥梁工程中具有极大的应用前景。
        Based on quasi-static tests, a pseudo-dynamic test of two 1/8-scaled concrete-filled steel tubular(CFST) lattice columns with flat lacing tubes was performed. The seismic records from the Wenchuan 2008 Earthquake and Kobe 1995 Earthquake were used as input ground motions. Seismic performance including deformation, strength, stiffness, and energy dissipation of the CFST lattice columns was studied with earthquakes and main aftershocks of different intensities. The results show that the CFST lattice columns with flat lacing tubes had good seismic performance. The structure was in an elastic state when subjected to the intensity 8 frequent,basic, rare, and extremely rare earthquakes. Under the intensity 9 rare earthquakes, the CFST column limbs yielded, and the structure entered the elastoplastic working state. With the increase in the peak ground acceleration, the strain of the steel tube at the bottom and the maximum response displacement at the top were both significantly increased. The plastic hinge region at the bottom of the CFST limb did not form a yield ring until the end of the test, and there was no apparent structural damage. The main aftershock aggravated the cumulative damage of the structure, and the structural stiffness degradation phenomenon was obvious. After experiencing one main shock(intensity 9 rare) and two equal-strength aftershocks, the elastic stiffness of the structure was reduced by about 50% compared with the initial elastic stiffness, while the maximum response displacement increased by 41%. Through the calculation of the strength and deformation of CFST lattice columns under various seismic conditions, it is further shown that this type of structure has sufficient strength reserves and good deformability and can still maintain a certain bearing capacity after many strong earthquakes. CFST lattice columns have a great application prospect in bridge engineering in high-intensity areas in China.
引文
[1]陈宝春,牟廷敏,陈宜言,等.我国钢-混凝土组合结构桥梁研究进展及工程应用[J].建筑结构学报,2013,34(增刊1):1―10.Chen Baochun,Mu Tingmin,Chen Yiyan,et al.State-of-the-art of research and engineering application of steel-concrete composite bridges in China[J].Journal of Building Structures,2013,34(Suppl 1):1―10.(in Chinese)
    [2]聂建国,廖彦波.四肢钢管混凝土格构柱轴压受力试验[J].清华大学学报(自然科学版),2009,49(12):1919―1924.Nie Jianguo,Liao Yanbo.Experiments of four-legged concrete-filled steel tubular laced columns subjected to axial loads[J].Journal of Tsinghua University(Sci&Tech),2009,49(12):1919―1924.(in Chinese)
    [3]蒋丽忠,周旺保,伍震宇,等.四肢钢管混凝土格构柱极限承载力的试验研究与理论分析[J].土木工程学报,2010,43(9):55―62.Jiang Lizhong,Zhou Wangbao,Wu Zhenyu,et al.Experimental study and theoretical analysis on the ultimate load carrying capacity of four-tube concrete filled steel tubular lattice columns[J].China Civil Engineering Journal,2010,43(9):55―62.(in Chinese)
    [4]陈宝春,宋福春.钢管混凝土平缀管格构柱极限承载力试验研究[J].土木工程学报,2009,30(3):36―44.Chen Baochun,Song Fuchun.Experimental study on ultimate load-carrying capacities of concrete filled steel tubular battened columns[J].Journal of Building Structures,2009,30(3):36―44.(in Chinese)
    [5]欧智菁,晏巧玲,薛建阳,等.变截面钢管混凝土格构柱轴压极限承载力[J].重庆大学学报,2016,39(5):114―120.Ou Zhijing,Yan Qiaoling,Xue Jianyang,et al.The ultimate load carrying capacity of variable cross-sectional concrete filled steel tubular laced columns on axial load[J].Journal of Chongqing University,2016,39(5):114―120.(in Chinese)
    [6]黄福云,陈宝春,李建中,等.有初应力的钢管混凝土格构柱轴压试验研究[J].建筑结构学报,2013,34(11):109―115.Huang Fuyun,Chen Baochun,Li Jianzhong,et al.Experimental study on influence of initial stress on concrete filled steel tubular latticed columns subjected to axial load[J].Journal of Building Structures,2013,34(11):109―115.(in Chinese)
    [7]Kawano A,Sakino K.Seismic resistance of CFT trusses[J].Engineering Structures,2003,25(5):607―619.
    [8]陈伯望,邹艳花,唐楚,等.四肢方圆钢管混凝土格构柱低周反复加载试验研究[J].土木工程学报,2014,47(增刊2):108―112.Chen Bowang,Zou Yanhua,Tang Chu,et cl.Contrast research on square and circular CFST laced columns pseudo-static test[J].China Civil Engineering Journal,2014,47(Suppl 2):108―112.(in Chinese)
    [9]蒋丽忠,黄志,陈善,等.钢管混凝土格构柱-组合箱梁节点抗震性能试验研究[J].振动与冲击,2014,33(18):156―162.Jiang Lizhong,Huang Zhi,Chen Shan,et al.Tests for aseismic behavior of connection joints composed of concrete-filled steel tubular lattice columns and composite box girders[J].Journal of Vibration and Shock,2014,33(18):156―162.(in Chinese)
    [10]袁辉辉,吴庆雄,陈宝春,等.平缀管式等截面钢管混凝土格构柱抗震性能试验与有限元分析[J].工程力学,2016,33(10):226―235.Yuan Huihui,Wu Qingxiong,Chen Baochun,et al.Seismic performance test and finite element analysis of concrete-filled steel tubular laced columns[J].Engineering Mechanics,2016,33(10):226―235.(in Chinese)
    [11]袁辉辉,吴庆雄,陈宝春,等.平缀管式等截面钢管混凝土格构柱荷载-位移骨架曲线计算方法[J].工程力学,2016,33(12):206―216.Yuan Huihui,Wu Qingxiong,Chen Baochun,et al.Calculation method of load-displacement skeleton curve for uniform sectional CFST lattice column with flat lacing tube[J].Engineering Mechanics,2016,33(12):206―216.(in Chinese)
    [12]欧进萍,吴波.压弯构件在主余震作用下的累积损伤试验研究[J].地震工程与工程振动,1994,14(3):20―29.Ou Jinping,Wu Bo.Test research on the accumulative damage of compression-flexure members under mainshock and aftershocks[J].Earthquake Engineering and Engineering Vibration,1994,14(3):20―29.(in Chinese)
    [13]袁万城,王征南,庞于涛,等.连续梁桥在主震-余震序列波下的地震易损性分析[J].哈尔滨工程大学学报,2016,37(12):1671―1676.Yuan Wancheng,Wang Zhengnan,Pang Yutao,et al.Seismic fragility analysis of a continuous girder bridge subject to an earthquake mainshock-aftershock sequence[J].Journal of Harbin Engineering University,2016,37(12):1671―1676.(in Chinese)
    [14]于晓辉,吕大刚,肖寒.主余震序列型地震动的增量损伤谱研究[J].工程力学,2017,34(3):47―53,114.Yu Xiaohui,Lv Dagang,Xiao Han.Incremental damage spectra of mainshock-aftershock sequence-type ground motions[J].Engineering Mechanics,2017,34(3):47―53,114.(in Chinese)
    [15]丁国,陈隽.序列型地震动物理随机模型研究[J].工程力学,2017,34(9):125―138.Ding Guo,Chen Jun.Study on physical random model of seismic sequences[J].Engineering Mechanics,2017,34(9):125―138.(in Chinese)
    [16]Hu Sheng,Gardoni Paolo,Xu Longjun.Stochastic procedure for the simulation of synthetic main shock-aftershock ground motion sequences[J].Earthquake Engineering and Structural Dynamics,2018,47(11):2275―2296.
    [17]AndréFurtado,Hugo Rodrigues,Humberto Varum,et al.Mainshock-aftershock damage assessment of infilled RC structures[J].Engineering Structures,2018,175:645―660.
    [18]Ehsan Omranian,Adel E.Abdelnaby,Gholamreza Abdollahzadeh.Seismic vulnerability assessment of RCskew bridges subjected to mainshock-aftershock sequences[J].Soil Dynamics and Earthquake Engineering,2018,114:186―197.
    [19]GB 18306―2015,中国地震动参数区划图[S].北京:中国标准出版社,2015.GB 18306―2015,Seismic ground motion parameters zonation map of China[S].Beijing:Standards Press of China,2015.(in Chinese)
    [20]JTG/T B02-01―2008,公路桥梁抗震设计细则[S].北京:人民交通出版社,2008.JTG/T B02-01―2008,Guidelines for seismic design of highway bridges[S].Beijing:China Communication Press,2008.(in Chinese)
    [21]吴轶,黄照棉,Vincent W Lee,等.基于刚度退化和滞回耗能的圆钢管混凝土柱损伤模型[J].地震工程与工程振动,2014,34(5):172―179.Wu Yi,Huang Zhaomian,Vincent W Lee,et al.Stiffness degradation and hysteretic energy dissipation based damage model of concrete-filled circular steel tube columns[J].Earthquake Engineering and Engineering Vibration,2014,34(5):172―179.(in Chinese)
    [22]CJJ 166―2011,城市桥梁抗震设计规范[S].北京:中国建筑工业出版社,2011.CJJ 166―2011,Code for seismic design of urban bridges[S].Beijing:China Architecture&Building Press,2011.(in Chinese)
    [23]GB 50936―2014,钢管混凝土结构技术规范[S].北京:中国建筑工业出版社,2014.GB 50936―2014,Technical code for concrete filled steel tubular structures[S].Beijing:China Architecture&Building Press,2014.(in Chinese)
    [24]GB 50011―2010,建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.GB 50011―2010,Code for seismic design of buildings[S].Beijing:China Architecture&Building Press,2010.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700