用户名: 密码: 验证码:
基于LabVIEW的PID自整定温控系统研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on PID Self-Tuning Temperature Control System Based on LabVIEW
  • 作者:李宁 ; 郑艺华
  • 英文作者:LI Ning;ZHENG Yihua;School of Electromechanic Engineering,Qingdao University;
  • 关键词:PID自整定 ; LabVIEW ; 温度控制
  • 英文关键词:PID self-tuning;;LabVIEW;;temperature control
  • 中文刊名:QDDX
  • 英文刊名:Journal of Qingdao University(Engineering & Technology Edition)
  • 机构:青岛大学机电工程学院;
  • 出版日期:2019-05-15
  • 出版单位:青岛大学学报(工程技术版)
  • 年:2019
  • 期:v.34;No.132
  • 基金:山东省重点研发计划项目(2015GSF117019)
  • 语种:中文;
  • 页:QDDX201902007
  • 页数:6
  • CN:02
  • ISSN:37-1268/TS
  • 分类号:31-36
摘要
为降低PID控制在实际应用中的复杂程度,满足用户对温控精度的需求,本文开发了基于LabVIEW的PID自整定温度控制系统。该系统设计了固态继电器驱动电路和STC89C52单片机控制程序等硬件部分,利用LabVIEW中的工具包对PID自整定控制的程序面板及前面板进行设计,并在不同加热功率和变负荷条件下对系统进行实验验证。实验结果表明,在设定的加热功率和负荷下,双位控制的精度为-0.13℃~+0.27℃,与双位控制相比,温控精度可达±0.1℃。该系统提高了温度控制精度,操作简便,通用性强,满足绝大多数用户对温控精度的要求,可进一步应用到民用及工业领域。
        In order to reduce the complexity of PID control in practical applications and meet the user′s demand for temperature control accuracy,this paper develops a PID self-tuning temperature control system based on LabVIEW.The system is designed with hardware components such as solid state relay drive circuit and STC89 C52 microcontroller control program.The program panel and front panel of the PID self-tuning control are designed by using the toolkit in LabVIEW,and the system is experimentally verified under different heating power and variable load conditions.The experimental results show that the accuracy of the two-position control is-0.13℃~+0.27 ℃ under the set heating power and load.Compared with the two-position control,the temperature control accuracy can reach ±0.1 ℃.The system improves the temperature control accuracy,is easy to operate,has strong versatility,and meets the requirements of most users for temperature control accuracy,and can be further applied to civil and industrial fields.
引文
[1]刘撷捷,杨智,范正平.基于LabVIEW的PID参数自整定控制器设计[J].自动化仪表,2009,30(11):38-40,44.
    [2]文生平,张施华,陈志鸿,等.基于模糊PID在线熔融指数仪测控系统设计[J].中国测试,2018,44(3):97-101.
    [3]荆学东,毕亚强.基于模糊参数自适应PID的高压爆破片泄压测试装置[J].中国测试,2018,44(5):83-87.
    [4] Du L,Lu X Y,Yu M,et al.Experimental investigation on fuzzy PID control of dual axis turntable servo system[J].Procedia Computer Science,2018,131:531-540.
    [5] El-Samahy A A,Shamseldin M A.Brushless DC motor tracking control using self-tuning fuzzy PID control and model reference adaptive control[J].Ain Shams Engineering Journal,2018,9(3):341-352.
    [6] Wang Y Z,Jin Q B,Zhang R D.Improved fuzzy PID controller design using predictive functional control structure[J].ISA Transactions,2017,71(2):354-363.
    [7]陈云霞,芦凤桂,朱妙凤,等.基于LabVIEW的Fuzzy-PID温度控制系统的设计[J].控制工程,2008,15(6):656-658,681.
    [8]王冠龙,崔靓,朱学军.基于数字PID算法的温度控制系统设计[J].传感器与微系统,2019,38(1):86-88,96.
    [9]付俐芳,晋帆,金小婷.基于LabVIEW的温度采集和控制系统[J].科学技术与工程,2011,11(34):8610-8613.
    [10] Huang H C,Zhang S Q,Yang Z,et al.Modified smith fuzzy PID temperature control in an oil-replenishing device for deepsea hydraulic system[J].Ocean Engineering,2018,149:14-22.
    [11] Shi D Q,Gao G L,Gao Z W,et al.Application of expert fuzzy PID method for temperature control of heating furnace[J].Procedia Engineering,2012,29(4):257-261.
    [12]刘伟立,孟文俊,王鹏锦.PID算法在LabVIEW中的实现[J].成组技术与生产现代化,2007,24(4):60-62.
    [13]晋兵营,李冠峰,宁广庆,等.基于LabVIEW的EPS用直流电机反馈控制系统建模与仿真[J].微电机,2013,46(1):59-62.
    [14]陈睿麟,奚天鹏,谈金祝,等.基于LabVIEW的神经网络PID温度控制系统研究[J].计算机应用与软件,2013,30(12):262-264.
    [15]曹静,朱传军,周向.基于LabVIEW的热处理温度PID控制系统设计[J].热加工工艺,2013,42(6):217-219.
    [16]戴维涵,代彦军,张鹏,等.半导体制冷元件特性参数测量及选用[J].上海交通大学学报,2004,38(10):1669-1672.
    [17] Kobarit T,Okajima J,Komiya A,et al.Development of guarded hot plate apparatus utilizing peltier module for precise thermal conductivity measurement of insulation materials[J].International Journal of Heat&Mass Transfer,2015,91:1157-1166.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700