用户名: 密码: 验证码:
三维NiO/CoMoO_4纳米线/片复合材料的制备及其超级电容特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation of Three-Dimensional NiO/CoMoO_4 Nanowires/Nanosheets Composite Materials and Their Supercapacitor Properties
  • 作者:冯晓娟 ; 魏欣欣 ; 石彦龙 ; 马金玉 ; 梁志琪 ; 张映龙
  • 英文作者:Feng Xiaojuan;Wei Xinxin;Shi Yanglong;Ma Jinyu;Liang Zhiqi;Zhang Yinglong;College of Chemistry and Chemical Engineering,Key Laboratory of Hexi Corridor Resources Utilization of Gansu Universities,HeXi University;
  • 关键词:氧化镍/钼酸钴 ; 多级结构 ; 水热法 ; 超级电容特性
  • 英文关键词:NiO/CoMoO4;;Hierarchical structure;;Hydrothermal method;;Supercapacitance performance
  • 中文刊名:HXTB
  • 英文刊名:Chemistry
  • 机构:河西学院化学化工学院甘肃省高校河西走廊特色资源利用省级重点实验室;
  • 出版日期:2019-01-18
  • 出版单位:化学通报
  • 年:2019
  • 期:v.82
  • 基金:国家自然科学基金项目(41761061);; 甘肃省高等学校科研项目(2017A-088);; 甘肃省大学生创新创业训练计划项目(201610740003);; 河西学院第九批大学生科技创新项目(106)资助
  • 语种:中文;
  • 页:HXTB201901008
  • 页数:6
  • CN:01
  • ISSN:11-1804/O6
  • 分类号:53-58
摘要
采用两步水热法和高温退火法成功制备了三维氧化镍/钼酸钴(NiO/CoMoO_4)复合电极材料。利用XRD、扫描电镜、透射电镜和电化学方法分别对其结构、表面形貌和电化学性能进行了表征和研究。结果表明,NiO/CoMoO_4呈独特的纳米线/片状结构而不同于NiO的针状形貌,其结构为活性物质提供了更大的活性位点。在电流密度为0. 3A/g时,复合物的比电容高达2253F/g,远远高于同电流密度下纯NiO电极材料的比电容,循环2000圈后,电容的保持率为92%,NiO和CoMoO_4的协同效应增强了其超级电容特性。
        Three-dimensional NiO/CoMoO_4 composite electrode materials were successfully prepared by two-step hydrothermal and high temperature annealing. The structure,surface morphology and electrochemical performance were characterized using X-ray diffraction,scanning electron microscopy,transmission electron microscopy and electrochemical method. The results showed that NiO/CoMoO_4 composite materials owned typical nanowires/nanosheet structure,which were different from needle-like morphology of NiO. The structure provided more active sites for the active substance,compared with pure NiO. The specific capacitance of the composites could reach 2253 F/g at the current density of 0. 3 A/g,which was higher than that of pure NiO. It displayed good cycling stability with 92%capacitance retention after 2000 cycles due to the synergistic effect between NiO and CoMoO_4.
引文
[1] Q Wang,J Yan,Z Fan. Energ Environ Sci.,2016,9(3):729~762.
    [2] Y Yang,Y Liang,Y Zhang et al. New J. Chem.,2015,39(5):4035~4040.
    [3] D P Cai,H Huang,D D Wang et al. ACS Appl. Mater.Interf.,2014,6:15905~15912.
    [4] Y T Chu,S L Xiong,B S Li et al. Chem. Electro. Chem.,2016,3:1~8.
    [5] W Wei,X Cui,W Chen et al. Chem. Soc. Rev.,2011,40:1697~1721.
    [6] L Dong,Y Chu,W Sun. Chem. Eur. J.,2008,14(16):5064~5072.
    [7] J L Lv,W L Guo,T X Liang. J. Electroanal. Chem.,2016,783:250~257.
    [8] D P Cai,D D Wang,B Liu et al. ACS Appl. Mater. Interf.,2014,6:5050~5055.
    [9] X H Wang,H Y Xia,J Gao et al. J. Mater. Chem.,2016,4:18181~18187.
    [10] S Baskarab,D Meyricka,K Selvan et al. Chem Eng J.,2014,253,502~507.
    [11] H Chen,J Jiang,Y Zhao,L Zhang. J. Mater. Chem. A,2015,3:428~437.
    [12] X D Zhang,J L Xiao,X Y Zhang et al. Electrochim. Acta,2016,91:758~766.
    [13]冯晓娟,石彦龙,李永燕等.化学通报,2017,80(6):552~557.
    [14] Y Zhang,Z Hu,Y Yang et al. J. Mater. Chem. A,2015,3(29):15057~15067.
    [15] D Ghosh,C K Das. ACS Appl. Mater. Interf.,2015,7:1122~1131.
    [16] C Guan,J Liu,C Cheng et al. Energy Environ. Sci.,2011,4:4496~4499.
    [17] D Cai,B Liu,D Wang et al. Electrochim. Acta,2014,115:358~363.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700