用户名: 密码: 验证码:
基于碎屑磷灰石裂变径迹热史判别碎屑岩形成时代的方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Dating of Formation Age of Clastic Rock Based on the Thermal Evolution History of Apatite Fission Track
  • 作者:宋立军 ; 刘池阳 ; 袁炳强
  • 英文作者:Song Lijun;Liu Chiyang;Yuan Bingqiang;School of Earth Sciences and Engineering, Xi'an Shiyou University;Key Laboratory of Tectonics and Petroleum Resources, Ministry of Education;Department of Geology, Northwest University;State Key Laboratory of Continental Dynamics, Northwest University;
  • 关键词:碎屑岩 ; 形成时代 ; 磷灰石裂变径迹 ; 热史模拟 ; 埋藏增温时间 ; 石油地质
  • 英文关键词:clastic rock;;formation time;;apatite fission track;;thermal history simulation;;burial warming time;;petroleum geology
  • 中文刊名:DQKX
  • 英文刊名:Earth Science
  • 机构:西安石油大学地球科学与工程学院;构造地质与油气资源教育部重点实验室;西北大学地质系;西北大学大陆动力学国家重点实验室;
  • 出版日期:2018-07-19 13:39
  • 出版单位:地球科学
  • 年:2018
  • 期:v.43
  • 基金:国家自然科学重点基金(No.90814005);; 国家自然科学基金(Nos.41102072、41372148);; 中国地质调查局项目(Nos.DD20160227,DD20160227-05);; 大陆动力学国家重点实验室联合重点课题(No.BJ081334);; 构造地质与油气资源教育部重点实验室基金(No.TPR-2012-20);; 构造地质学精品课程资助
  • 语种:中文;
  • 页:DQKX2018S2017
  • 页数:12
  • CN:S2
  • ISSN:42-1874/P
  • 分类号:218-229
摘要
查明碎屑沉积岩的形成时代是正确进行地层对比、合理恢复盆地原貌、准确认识区域构造演化和科学进行油气资源评价的前提.依据"沉积物埋藏深度增加,其温度相应增加"的原理,可将碎屑磷灰石热史模拟中的初始升温阶段所对应的时间,定义为碎屑岩的形成时代;利用碎屑岩内磷灰石矿物的裂变径迹热史模拟成果,可确定赋存磷灰石矿物的沉积岩(物)的热演化史;根据模拟的沉积岩(物)热史中初始埋藏增温时间便可确定该碎屑沉积岩(物)沉积的时代.前人大量碎屑磷灰石裂变径迹热史模拟实例和六盘山砂岩磷灰石裂变径迹热史模拟成果证明,磷灰石裂变径迹热史确定碎屑岩的形成时代是可行的,利用"经历埋藏温度小于封闭温度的未退火或部分退火"碎屑岩样品的磷灰石裂变径迹热史来确定该碎屑岩形成时代是可信的.
        The dating of formation age of clastic rock is the premise of the division and correlation of sedimentary strata, reasonable reconstruction of prototype basin, better understanding of the regional tectonic evolutions and scientific evaluation of regional resources. According to the principle of "the temperature of sediments or sedimentary rocks increases with increasing burial depth", the formation age of clastic rock can be determined by the initial burial warming time of thermal history which can be reconstructed by means of apatite fission track(AFT) thermal history simulation.Previous applications of AFT thermal history simulation and the example of sandstone sample of Liupanshan indicate that it is feasible to date the formation age of clastic rock by the simulated thermal evolution history, using clastic samples that experienced burial temperatures of less than the closure temperature in the thermal history simulation of fission track.
引文
Bai,X.J.,Qiu,H.N.,Liu,W.G.,et al.,2018.Automatic 40Ar/39Ar Dating Techniques Using Multicollector ARGUS VI Noble Gas Mass Spectrometer with Self-Made.Journal of Earth Science,29(2):408-415.
    Barbarand,J.,Lucazeau,F.,Pagel,M.,et al.,2001.Burial and Exhumation History of the South-Eastern Massif Central(France)Constrained by Apatite Fission-Track Thermochronology. Tectonophysics,335(3-4):275-290.https://doi.org/10.1016/s0040-1951(01)00069-5
    Barbero,L.,Lopez-Garrido,A.C.,2006.Mesozoic Thermal History of the Prebetic Continental Margin(Southern Spain):Constraints from Apatite Fission-Track Analysis.Tectonophysics,422(1-4):115-128.https://doi.org/10.1016/j.tecto.2006.05.011
    Chen,G.,Sun,J.B.,Zhou,L.F.,et al.,2007.Fission-Track-Age Records of the Mesozoic Tectonic-Events in the Southwest Margin of the Ordos Basin,China.Science in China(Series D),37(Suppl. 1):110-118(in Chinese).
    Chen,J.Heermance,R.V.,Burbank,D.W.,et al.,2007. Magneto-Chronology and Its Implications of the Xiyu Conglomerate in the Southwestern Chinese Tian Shan Foreland. Quaternary Sciences,27(4):576-587(in Chinese with English abstract).
    Cheng,Y.J.,Wu,Z.P.,Yan,S.Y.,et al.,2015. Cenozoic Tectonic Evolution of Liaodong Dome, Northeast Liaodong Bay, Bohai, Offshore China, Constraints from Seismic Stratigraphy,Vitrinite Reflectance and Apatite Fission Track Data.Tecto,nophysics, 659:152-165.https://doi.org/10.1016/j.tecto.2015.07.039
    Crowley,K.D.,Cameron,M.,Schaefer,R.L., 1991.Experimental Studies of Annealing of Etched Fission Tracks in Fluorapatite.Geochimica et Cosmochimica Acta, 55(5):1449-1465. https://doi.org/10.1016/0016-7037(91)90320-5
    Deng,B.,Liu,S.G.,Li,Z.W.,et al.,2013.Differential Exhumation at Eastern Margin of the Tibetan Plateau,from Apatite FissionTrack Thermochronology.Tectonop hysics,591:98-115.https://doi.org/10.1016/j.tecto.2012.11.012
    Deng,J.,Yang,L.Q.,Sun,Z.S.,et al.,2000.Ore-Forming Dynamics of Tectonic Regime Transformation and Multi-Layer Fluid Circulation.Earth Science,25(4):397-403(in Chinese with English abstract).
    Dickinson,W.R.,Gehrels,G.E.,2009.Use of U-Pb Ages of Detrital Zircons to Infer Maximum Depositional Ages of Strata:A Test against a Colorado Plateau Mesozoic Database.Earth and Planetary Science Letters,288(1-2):115-125.https://doi.org/10.1016/j.epsl.2009.09.013
    Duddy,I.R.,Green,P.F.,Laslett,G.M.,1988.Thermal Annealing of Fission Tracks in Apatite 3. Variable Temperature Behaviour.Chemical Geology:Isotope Geoscience Section, 73(1):25-38.https://doi.org/10.1016/0168-9622(8 8)90019-x
    Fernandes,P.,Cogne,N.,Chew,D.M.,et al.,2015.The Thermal History of the Karoo Moatize-Minjova Basin, Tete Province, Mozambique:An Integrated Vitrinite Reflectance and Apatite Fission Track Thermochronology Study. Journal of African Earth Sciences, 112:55-72. https://doi.org/10.1016/j.jafrearsci.2015.09.009
    Gleadow,A J.W.,Duddy,I.R.,Lovering,J.F.,1983.Fission Track Analysis:A New Tool for the Evaluation of Thermal Histories and Hydrocarbon Potential. The APPEA Journal,23(1):93-102.https://doi.org/10.1071/aj82009
    Gleadow,A.J.W.,Duddy,I.R.,Green,P.F.,et al. 1986. Fission Track Lengths in the Apatite Annealing Zone and the Interpretation of Mixed Ages. Earth and Planetary Science Letters, 78(2-3):245-254.https://doi.org/10.1016/0012-821x(86)90065-8
    Green,P.F.,Duddy,I.R.,Gleadow,A.J.W., 1986. Thermal Annealing of Fission Tracks in Apatite 1. A Qualitative Description. Chemical Geology:Isotope Geoscience Section, 59:237-253. https://doi.org/10.1016/0009-2 541(86)90048-3
    Guo,C.L.,Wu,F.Y.,2003.High Precision Dating of Deposition of Clastic Sedimentary Rocks—U-Pb SHRIMP Dating on Authigenic Xenotime.Earth Science Frontiers,10(2):327-334(in Chinese with English abstract).
    Hu,R.G.,Bai,X.J.,Wijbrans,J.,et al.,2018.Occurrence of Excess 40Ar in Amphibole:Implications of 40Ar/39Ar Dating by Laser Stepwise Heating and in vacuo Crushing.Journal of Earth Science,29(2):416-426.
    Ketcham,R.A.,2005.Forward and Inverse Modeling of LowTemperature Thermochronometry Data. Reviews in Mineralogy and Geochemistry, 58(1):275-314. https://doi.org/10.2138/rmg.2005.58.11
    Ketcham,R.A.,Donelick,R.A.,Carlson,W.D.,1999a. Variability of Apatite Fission-Track Annealing Kinetics;Ⅰ,Experimental Results.American Mineralogist,84(9):1213-1223. https://doi.org/10.213 8/am-1999-0901
    Ketcham,R. A.,Donelick,R. A.,Carlson, W.D., 1999b. Variability of Apatite Fission-Track Annealing Kinetics;Ⅲ,Extrapolation to Geological Time Scales.American Mineralogist,84:1235-1255.https://doi.org/10.213 8/am-1999-0903
    Ketcham,R.A.,Carter,A.,Donelick,R.A.,et al.,2007.Improved Modeling of Fission-Track Annealing in Apatitc.American Mineralogist,92:799-810.https://doi.org/10.213 8/am.2007.2281
    Ketcham,R.A.,Donelick,R.A.,Donelick,M.B., 2000. AFTSolve:A Program for Multikinetic Modeling of Apatite Fission Track Data.Geological Materials Research,2(1):1-32.
    Laslett,G.M.,Galbraith,R.F.,1996.Statistical Modelling of Thermal Annealing of Fission Tracks in Apatite. Geochimica et Cosmochimica Acta,60(24):5117-5131.https://doi.org/10.1016/s0016-7037(96)00307-9
    Laslett,G.M.,Green,P.F.,Duddy,I.R.,et al., 19 87.Thermal Annealing of Fission Tracks in Apatite 2.A Quantitative Analysis.Chemical Geology:Isotope Geoscience Section,65(1):1-13.https://doi.org/10.1016/0168-9622(87)90057-1
    Li,H.K.,Lu,S.N.,Su,W.B.,et al.,2013.Recent Advances in the Study of the Mesoproterozoic Geochronology in the North China Craton.Journal of Asian Earth Scinces,72:216-227.https://doi.org/10.1016/j.jseaes.2013.02.020
    Li,K.,Jolivet,M.,Zhang,Z.C.,et al.,2016.Long-Term Exhumation History of the Inner Mongolian Plateau Constrained by Apatite Fission Track Analysis.Tectonophysics,666:121-133.https://doi.org/10.1016/j.tecto.2015.10.020
    Li,N.H.,Wu,W.L.,1987.The Geological Sense of"Tanmashi Conglomerate".Contributions to Geology and Mineral Resources Research,2(2):46-53(in Chinese with English abstract).
    Li,X.P.,Chen,G.,Zhang,H.R.,et al.,2006.Mesozoic Tectonic Events in Ordos Basin and Their Sedimentary Responses.Journal ofXi'an Shiyou University(Natural Science Edition),21(3):1-4(in Chinese with English abstract).
    Li,Z.W.,Liu,S.G.,Chen,H.D.,et al.,2012.Spatial Variation in MesoCenozoic Exhumation History of the Longmen Shan Thrust Belt(Eastern Tibetan Plateau)and the Adjacent Western Sichuan Basin:Constraints from Fission Track Thermochronology.Journal of Asian Earth Scienes,47:185-203.https://doi.org/10.1016/j.jseaes.2011.10.016
    Liu,C.Y.,Zhao,H.G.,Gui,X.J.,et al.,2006.Space-Time Coordinate of the Evolution and Reformation and Mineralization Response in Ordos Basin.Acta Geologica Sinica,80(5):617-638(in Chinese with English abstract).
    Meng,Q.R.,Xue,F.,Zhang,G.W.,1994.Conglomerate Sedimentation and Its Tectonic Implication,Heihe Area within Shangdan Zone of the Qinling.Acta Sedimentologica Sinica,12(3):37-46(in Chinese with English abstract).
    Qi,K.,Ren,Z.L.,Cui,J.P.,et al.,2017.The Meso-Cenozoic Tectonic Thermal Evolution of the Qishan-Linyou Areas in Weibei Uplift of Ordos Basin and Its Response in Geology:Evidence from Fission-Track Analysis.Acta Geologica Sinica,91(1):151-162(in Chinese with English abstract).
    Qiu,N.S.,2005.Methods of Thermal History Reconstruction of Sedimentary Basins and Their Application in Oil and Gas Exploration.Marine Origin Petroleum Geology,10(2):45-51(in Chinese with English abstract).
    Qiu,N.S.,Jiang,G.,Mei,Q.H.,et al.,2011.The Paleozoic Tectonothermal Evolution of the Bachu Uplift of the Tarim Basin,NW China:Constraints from(U-Th)/He Ages,Apatite Fission Track and Vitrinite Reflectance Data.Journal of Asian Earth Sciences,41(6):551-563.https://doi.org/10.1016/j.jseaes.2011.02.008
    Rojas Vera,E.A.,Mescua,J.,Folguera,A.,et al.,2015.Evolution of the Chos Malal and Agrio Fold and Thrust Belts,Andes of Neuquen:Insights from Structural Analysis and Apatite Fission Track Dating.Journal of South American Earth Sciences,64:418-433.https://doi.org/10.1016/j.jsames.2015.10.001
    Sahu,H.S.,Raab,M.J.,Kohn,B.P.,et al.,2013.Thermal History of the Krishna-Godavari Basin,India:Constraints from Apatite Fission Track Thermochronology and Organic Maturity Data.Journal of Asian Earth Sciences,73:1-20.https://doi.org/10.1016/j.jseaes.2013.04.028
    Schneider,D.A.,Bickford,M.E.,Cannon,W.F.,et al.,2002.Age of Volcanic Rocks and Syndepositional Iron Formations,Marquette Range Supergroup:Implications for the Tectonic Setting of Paleoproterozoic Iron Formations of the Lake Superior Region.Canadian Journal of Earth Sciences,39(6):999-1012.https://doi.org/10.1139/e02-016
    Steinmann,M.,Hungerbuhler,D.,Seward,D.,et al.,1999.Neogene Tectonic Evolution and Exhumation of the Southern Ecuadorian Andes:A Combined Stratigraphy and Fission-Track Approach.Tectonophysics,307(3-4):255-276. https://doi.org/10.1016/s0040-1951(99)00100-6
    Song,L.J.,Liu,C.Y.,Zhao,H.G.,et al.,2016.Geochemical Characteristics,Sedimentary Environment and Tectonic Setting of Huangqikou Formation, Ordos Basin. Earth Science,41(8):1295-1308,1321(in Chinese with English abstract).
    Song,L.J.,Mu,Q.H.,Li,A.R.,et al.,2013.Fission-Track Thermal Evolution History in the Formation Age of Yaoshan Formation.Coal Geology&Exploration,41(4):1-4(in Chinese with English abstract).
    Tang,W.H.,Zhang,Z.C.,Li,J.F.,et al.,2015.Mesozoic and Cenozoic Uplift and Exhumation of the Bogda Mountain,NW China:Evidence from Apatite Fission Track Analysis. Geoscience Frontiers, 6(4):617-625.https://doi.org/10.1016/j.gsf.2014.04.006
    Wang,Y.N.,Cai,K.D.,Sun,M.,et al.,2018.Tracking the Multi-Stage Exhumation History of the Western Chinese Tianshan by Apatite Fission Track(AFT)Dating:Implication for the Preservation of Epithermal Deposits in the Ancient Orogenic Belt.Ore Geology Reviews, 100:1111-132.https://doi.org/10.1016/j.oregeorev.2017.04.011
    Wildman,M.,Brown,R.,Watkins,R.,et al.,2015.Post Break-up Tectonic Inversion across the Southwestern Cape of South Africa:New Insights from Apatite and Zircon Fission Track Thermochronometry.Tectonophysics,654:30-55.https://doi.org/10.1016/j.tecto.2015.04.012
    Yan,Q.R.,Hanson,A.D.,Wang,Z.Q.,et al.,2004.Age,Genesis Environment and Tectonic Significance of Conglomerate in Guanjiagou Formation,South Qinling.Chinese Science Bulletin,49(14):1416-1423(in Chinese).
    Yan,Z.,Fang,A.M.,Pan,Y.S.,et al.,2005.Dagong Conglomerate Depositional Environment,Foraminiferal Age and Its Tectonic Significance in Tibet.Progress in Natural Sciences,15(5):565-571(in Chinese).
    Yang,D.H.,1945.Age of Conglomerates of Maotai.Geological Review,12(5-6):311-314,340(in Chinese).
    Zhang,C L.,Meng,Q.R.,Yu,Z.P.,et al., 1997.Geochemical Characteristics and Tectonic Implication of Gravels in the Hubaohe Conglomerate in the East Qinling.Acta Sedimentologica Sinica,15(3):115-119(in Chinese with English abstract).
    Zheng,D.W.,Zhang,P.Z.,Wan,J.L.,et al.,2005.Apatite Fission Track Evidence for the Thermal History of the Liupanshan Basin. Chinese Journal of Geophysics,48(1):157-164(in Chinese with English abstract).
    Zhong,Y.,Zhai,M.G.,Peng,P.,et al.,2015.Detrital Zircon U-Pb Dating and Whole-Rock Geochemistry from the Clastic Rocks in the Northern Marginal Basin of the North China Craton:Constraints on Depositional Age and Provenance of the Bayan Obo Group.Precambrian Research,258:133-145.https://doi.org/10.1016/j.precamres.2014.12.010
    Zhou,Z.Y.,Mao,F.M.,Liao,Z.T.,et al.,2001.Estimation of the MultiComponent Fission Track Age Data an Its Application in the Provenance Study of Sedimentary Basins.Acta Sedimentologica Sinica,19(3):456-458,473(in Chinese with English abstract).
    陈刚,孙建博,周立发,等,2007.鄂尔多斯盆地西南缘中生代构造事件的裂变径迹年龄记录.中国科学(D辑),37(增刊1):110-118.
    陈杰,Heermance,R.V.,Burbank,D.W.,等,2007.中国西南天山西域砾岩的磁性地层年代与地质意义.第四纪研究,27(4):576-587.
    邓军,杨立强,孙忠实,等,2000.构造体制转换与流体多层循环成矿动力学.地球科学,25(4):397-403.
    郭春丽,吴福元,2003.碎屑沉积岩沉积作用的高精度定年——自生磷钇矿离子探针U-Pb年龄测定.地学前缘,10(2):327-334.
    黎乃煌,武文来,1987.“探马石砾岩”的地质意义.地质找矿论丛,2(2):46-53.
    李向平,陈刚,章辉若,等,2006.鄂尔多斯盆地中生代构造事件及其沉积响应特点.西安石油大学学报(自然科学版),21(3):1-4.
    刘池洋,赵红格,桂小军,等,2006.鄂尔多斯盆地演化—改造的时空坐标及其成藏(矿)响应.地质学报,80(5):617-638.
    孟庆任,薛峰,张国伟,1994.秦岭商丹带内黑河地区砾岩沉积及其构造意义.沉积学报,12(3):37-46.
    祁凯,任战利,崔军平,等,2017.鄂尔多斯盆地渭北隆起岐山—麟游地区中新生代构造热演化及地质响应——来自裂变径迹分析的证据.地质学报,91(1):151-162.
    邱楠生,2005.沉积盆地热历史恢复方法及其在油气勘探中的应用.海相油气地质,10(2):45-51.
    宋立军,刘池阳,赵红格,等,2016.鄂尔多斯地区黄旗口组地球化学特征及其沉积环境与构造背景.地球科学,41(8):1295-1308,1321. https://doi.org/10.3799/dqkx.2016.105.
    宋立军,牟秋环,李爱荣,等,2013.宁夏固原炭山窑山组形成时代的裂变径迹热史约束.煤田地质与勘探,41(4):1-4.
    闫全人,Hanson,A.D.,王宗起,等,2004.南秦岭关家沟组砾岩的时代、成因环境及其构造意义.科学通报,49(14):1416-1423.
    闫臻,方爱民,潘裕生,等,2005.西藏达金砾岩沉积环境、有孔虫时代及其大地构造意义.自然科学进展,15(5):565-571.
    杨登华,1945.茅台砾岩之时代问题.地质论评,12(5-6):311-314,340.
    张成立,孟庆任,余在平,等,1997.东秦岭虎豹河砾岩砾石的地球化学特征及其构造意义.沉积学报,15(3):115-119.
    郑德文,张培震,万景林,等,2005.六盘山盆地热历史的裂变径迹证据.地球物理学报,48(1):157-164.
    周祖翼,毛凤鸣,廖宗廷,等,2001.裂变径迹年龄多成分分离技术及其在沉积盆地物源分析中的应用.沉积学报,19(3):456-458,473.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700