用户名: 密码: 验证码:
快速激光熔覆Ni/不锈钢堆焊层组织及耐蚀性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Microstructure and Corrosion Resistance of Ni/Stainless Steel Surfacing Layer Deposited via High-speed Laser Cladding
  • 作者:董会 ; 韩燕 ; 付安庆 ; 周勇 ; 李霄
  • 英文作者:DONG Hui;HAN Yan;FU An-qing;ZHOU Yong;LI Xiao;Xi'an Shiyou University;CNPC Tubular Goods Research Institute;
  • 关键词:快速激光熔覆 ; 堆焊层 ; 点蚀 ; 碳钢 ; 不锈钢 ; 腐蚀
  • 英文关键词:high-speed laser cladding;;cladding layer;;pitting;;carbon steel;;stainless steel;;corrosion
  • 中文刊名:BMJS
  • 英文刊名:Surface Technology
  • 机构:西安石油大学;中国石油集团石油管工程技术研究院;
  • 出版日期:2019-05-20
  • 出版单位:表面技术
  • 年:2019
  • 期:v.48
  • 基金:西安石油大学“材料科学与工程”省级优势学科(YS37020203);; 材料成形与模具技术国家重点实验室开放课题研究基金(P2018-17)~~
  • 语种:中文;
  • 页:BMJS201905005
  • 页数:7
  • CN:05
  • ISSN:50-1083/TG
  • 分类号:33-39
摘要
目的提高CT90钢耐腐蚀性能的同时,大幅度提升激光熔覆效率。方法用快速激光熔覆在CT90连续油管表面堆焊一层Ni/不锈钢涂层。用扫描电子显微镜(SEM)及能谱(EDS)研究涂层组织结构特征,用电化学工作站测试涂层耐全面腐蚀和点蚀的能力,通过SEM分析试样表面腐蚀形貌。结果一次扫描后,CT90连续油管表面制备了一层约200μm厚的316L/Ni堆焊层,堆焊层由约50μm厚的扩散区与150μm厚的涂层区组成。堆焊层致密程度较高,其孔隙率仅约为0.4%,稀释率约为1.7%。熔覆层晶粒主要以柱状晶的方式垂直于熔覆层/基体界面生长,表面存在少量等轴晶区和板条形貌的晶粒。与涂层区晶粒内部相比,涂层区晶界处的Cr含量降低约1.2%。熔覆316L/Ni堆焊层后,CT90连续油管的自腐蚀电位升高约0.55 V,自腐蚀电流密度降低约95%,点蚀电位约为0.34 V。电化学测试后,CT90试样表面腐蚀严重,而熔覆层大部分区域仍保持测试前形态,少量区域发生局部腐蚀,腐蚀区域呈现蜂窝形貌。结论快速激光熔覆在保证熔覆层低孔隙率、高致密度、低稀释的同时,还显著提升了激光熔覆的生产效率。涂层能够显著提升CT90钢耐全面腐蚀及局部腐蚀的能力,使得CT90钢的腐蚀形式发生变化。
        The work aims to improve the corrosion resistance of CT90 coiled tubing and the efficient of the lase cladding.The Ni/316 L cladding layer was deposited on CT90 coiled tubing via high-speed laser cladding. The microstructure of cladding was addressed by scanning electron microscope(SEM) and energy dispersive spectrum(EDS). The elentrochemical workshop was employed to test the resistances of general corrosion and pitting corrosion of the cladding and then the corrosion morphology was represented through SEM. The Ni/316 L cladding layer with thickness of 200 μm could be deposited on CT90 coiled tubing after once scanning. The cladding layer contained 50 μm thick diffusion region and 150 μm thick coating. The cladding layer was dense and the porosity was only about 0.4%. In addition, the dilution rate was approximately 1.7%. The columnar grains in cladding mainly grew perpendicular to the interface of cladding layer/matrix, and there were a few equiaxed grains and slatted grains around the surface of cladding layer. Compared with the inner of grain in coating area, the Cr element content at grain boundary in coating area decreased about 1.2%. The corrosion potential of Ni/316 L cladding layer increased about 0.55 V after high-speed laser cladding. Additionally, the corrosion current density decreased about 95%. The pitting potential of the cladding layer was about 0.34 V. The CT90 corrosion was seriously after electrochemistry test, while the most regions of cladding still remained the morphology before test except a few local corrosion areas. The corrosion regions of cladding surface exhibited faveolated morphology. The high-speed laser cladding not only can deposit the coating with characteristics of low porosity, densification, low dilution rate, but also dramatically improve the efficiency of laser cladding. Both the general corrosion resistance and the local corrosion resistance of CT90 coiled tubing improves dramatically via 316 L/Ni coating deposited by high-speed laser cladding. Meanwhile, the corrosion mode changes after deposition of 316 L/Ni cladding.
引文
[1]LIU Z Y,Li H,JIA Z J,et al.Failure analysis of P110steel tubing in low-temperature annular environment of CO2 flooding wells[J].Engineering failure analysis,2016,60:296-306.
    [2]MARTINS C M B,MOREIRA J L,MARTINS J I.Corrosion in water supply pipe stainless steel 304 and a supply line of helium in stainless steel 316[J].Engineering failure analysis,2014,39:65-71.
    [3]RAMESH P,RAM G D J.Corrosion performance of AISI 316L friction surfaced coatings[J].Corrosion science,2012,62:95-103.
    [4]FANG X X,ZHOU H Z,XUE Y J.Corrosion properties of stainless steel 316L/Ni-Cu-P coatings in warm acidic solution[J].Transactions of Nonferrous Metals Society of China,2015,25:2594-2600.
    [5]裘智超,熊春明,常泽亮,等.油管内涂层防腐技术在塔中I号气田的应用[J].天然气工业,2012,32(10):86-89,118.QIU Zhi-chao,XIONG Chun-ming,CHANG Ze-liang,et al.Application of anti-corrosion coating for internal tubing in the Tazhong-I gas field,tarim basin[J].Nature gas industry,2012,32(10):86-89,118.
    [6]HUSAIN A,CHAKKAMALAYATH J,AL-BAHAR S.Electrochemical impedance spectroscopy as a rapid technique for evaluating the failure of fusion bonded epoxy powder coating[J].Engineering failure analysis,2017,82:765-775.
    [7]HALLIDAY M.Development&testing of new generation high temperature corrosion resistant coatings[C]//NACE.Germany:Korrozios higyelo,2005.
    [8]董会,姚建洮,周勇,等.碳钢表面等离子喷涂Ni Cr Al涂层的耐蚀性能研究[J].热加工工艺,2017,46(22):135-138,142.DONG Hui,YAO Jian-tao,ZHOU Yong,et al.Research on corrosion resistance of plasma-sprayed NiCrAl coating on carbon steel surface[J].Hot working technology,2017,46(22):135-138,142.
    [9]GRAY G T,LIVESCU V,RIGG P A,et al.Structure/property(constitutive and spallation response)of additively manufactured 316L stainless steel[J].Acta materialia,2017,138:140-149.
    [10]李栋,张群莉,张杰,等.不同气氛对激光熔覆IN718涂层形貌?组织与性能的影响[J].表面技术,2018,47(7):185-190.LI Dong,ZHAGN Qun-li,ZHAGN Jie,et al.Influence of atmospheres on morphology,microstructure and properties of laser cladding IN718 coatings[J].Surface technology,2018,47(7):185-190.
    [11]LIU J,LI J,CHENG X,et al.Effect of dilution and macrosegregation on corrosion resistance of laser clad AerMet100 steel coating on 300M steel substrate[J].Surface&coatings technology,2017,325:352-359.
    [12]CHEN L,BAI S L.The anti-corrosion behavior under multi-factor impingement of hastelloy C22 coating prepared by multilayer laser cladding[J].Applied surface science,2018,437:1-12.
    [13]WU Q L,ZHANG J Q.Corrosion behavior of laser-clad Cu-9Ni-6Sn coating[J].Surface&coatings technology,2018,349:1117-1129.
    [14]韩亚军,陈友媛.316L不锈钢在不同电导率海水和NaCl溶液中的电化学腐蚀行为[J].材料导报,2012,26(10):57-60.HAN Ya-jun,CHEN You-yuan.Electrochemistry corrosion behaviors of 316L stainless steel in different electric conductivity seawaters and NaCl solutions[J].Materials review,2012,26(10):57-60.
    [15]GB/T 17899-1999,不锈钢点蚀电位测量方法[S].GB/T 17899-1999,Method of pitting potential measurement for stainless steel[S].
    [16]张国超.超级13Cr不锈钢油套管材料在CO2环境下的腐蚀行为研究[D].西安:西安石油大学,2012.ZHANG Guo-chao.Research on corrosion behavior of super 13Cr stainless steel under CO2 environment[D].Xi'an:Xi'an Shiyou University,2012.
    [17]吕祥鸿,赵国仙,张建兵,等.超级13Cr马氏体不锈钢在CO2及H2S/CO2环境中的腐蚀行为[J].北京科技大学学报,2010,32(2):207-212.LV Xiang-hong,ZHAO Guo-xian,ZHANG Jian-bing,et al.Corrosion behaviors of super 13Cr martensitic stainless steel under CO2 and H2S/CO2 environment[J].Journal of University of Science and Technology Beijing,2010,32(2):207-212.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700