用户名: 密码: 验证码:
Au对TiO_2光电催化材料的改性策略研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress of the modification of TiO_2 by Au nanoparticles for photoelectrocatalytic applications
  • 作者:聂利富 ; 徐喆 ; 柯善明 ; 曾燮榕 ; 林鹏
  • 英文作者:NIE Lifu;XU Zhe;KE Shanming;ZENG Xierong;LIN Peng;College of Materials Science and Engineering, Shenzhen University;Shenzhen Key Laboratory of Special Functional Materials;Shenzhen Engineering Laboratory for Advance Technology of Ceramics;
  • 关键词:环境 ; 能源 ; 光电催化 ; Au/TiO2 ; 复合材料 ; 改性策略
  • 英文关键词:environment;;energy;;photoelectrocatalysis;;Au/TiO2;;composites;;modified strategy
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:深圳大学材料学院;深圳市特种功能材料重点实验室;深圳陶瓷先进技术工程实验室;
  • 出版日期:2019-07-05
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.334
  • 基金:国家自然科学基金(61771318);; 深圳市基础研究项目(JCYJ20170302145633009)
  • 语种:中文;
  • 页:HGJZ201907027
  • 页数:11
  • CN:07
  • ISSN:11-1954/TQ
  • 分类号:267-277
摘要
近年来,环境污染、能源枯竭问题日益严重,成为制约人类生存与发展的主要因素。光电催化技术能够同时实现污染物的降解与清洁能源的制备,有助于缓解环境污染与能源枯竭问题。作为典型的光(电)催化材料,TiO_2具有光活性强、性质稳定、廉价易得、环境友好等诸多优点,数十年来已成为光催化及相关领域的研究热点。然而,TiO_2存在的本征缺陷依然制约着其进一步推广应用,为此研究人员已提出多种方式对TiO_2进行改性。其中贵金属/TiO_2复合材料可显著提升TiO_2的光学活性并拓宽其吸收波长范围,尤其是Au/TiO_2材料体系已受到广泛关注和认可,表现出良好的应用前景。本文通过对目前Au/TiO_2复合材料的发展现状进行了总结,首先简单介绍了Au和TiO_2的化学性质及Au对TiO_2光学性能的增强原理;随后对Au/TiO_2复合材料的改性策略及相关作用机制展开讨论,包括Au对TiO_2光学性能的影响及调控、修饰方法的选择与影响等;最后总结出目前Au/TiO_2复合材料依然以克服TiO_2的两大本征缺陷为主,探讨各类新型Au/TiO_2复合材料有望使其得到逐步推广与实际应用。最后对目前Au/TiO_2复合材料的研究现状进行系统总结并探讨该材料未来的研究和发展方向。
        Recently, the environmental pollution and energy depletion problems are becoming more and more serious, which have restricted the human survival and development. Using photocatalytic technique,the degradation of pollutants and preparation of clean energy can be achieved, which help to reduce the environmental pollution and curb the energy depletion. Titanium dioxide(TiO_2) is one of the most studied materials in photocatalysis area, due to many advantages including excellent photoactivity, stable, cheap and environment friendly. However, the intrinsic defects existing in TiO_2 still restrict its further application. The researchers have proposed a variety of ways for the modification of TiO_2. For example,precious metals/TiO_2 composites can significantly improve the photoactivity and broaden the absorption wavelength range of TiO_2. Especially, Au/TiO_2 composite has been widely studied, which shows a promising prospect of applications in many areas. In this review, the development of Au/TiO_2 composites in recent years is summarized. Firstly, the chemical properties of Au and TiO_2, and the optical enhancement principle of Au/TiO_2 composites are briefly introduced. Then, the modified strategy and related mechanism of Au/TiO_2 composites are well discussed, including Au regulation effect on the optical properties of TiO_2, and the selective modification methods and techniques. Finally, the current status of Au/TiO_2 composites are still dominated by overcoming the two major intrinsic defects of TiO_2, and it is expected that various new Au/TiO_2 composites can be gradually promoted and applied.
引文
[1] LUO Jie, CHEN Jiaoyan, WANG Haiyan, et al. Ligand-exchange assisted preparation of plasmonic Au/TiO2nanotube arrays photoanodes for visible-light-driven photoelectrochemical water splitting[J]. Journal of Power Sources, 2016, 303:287-293.
    [2] WU Ling, LI Fang, XU Yuanyuan, et al. Plasmon-induced photoelectrocatalytic activity of Au nanoparticles enhanced TiO2nanotube arrays electrodes for environmental remediation[J]. Applied Catalysis B:Environmental, 2015, 164:217-224.
    [3] LOW Jingxiang, CHENG Bei, YU Jiaguo. Surface modification and enhanced photocatalytic CO2reduction performance of TiO2:a review[J]. Applied Surface Science, 2017, 392:658-686.
    [4]刘洋,邹斌,钱鲲,等. Au/TiO2纳米复合物增强可植入式葡萄糖传感器[J].苏州科技学院学报(自然科学版), 2016, 33(4):48-51.LIU Yang, ZOU Bin, QIAN Kun, et al. An Au/TiO2nanocomposite enhanced biosensor for embedding glucose monitoring[J]. Journal of Suzhou University of Science and Technology(Natural Science),2016, 33(4):48-51.
    [5]霍小鹤,刘培培,刘小强,等.以金纳米颗粒-二氧化钛纳米线阵列为支架的电化学免疫传感的构建及其应用[J].化学研究, 2017, 28(1):113-119.HUO Xiaohe, LIU Peipei, LIU Xiaoqiang, et al. Construction of an electrochemical immunosensor based on Au nanoparticles-TiO2nanowire arrays and its application[J]. Chemical Research, 2017, 28(1):113-119.
    [6] QIU Pengxiang, XU Chenmin, ZHOU Ning, et al. Metal-free black phosphorus nanosheets-decorated graphitic carbon nitride nanosheets with C-P bonds for excellent photocatalytic nitrogen fixation[J].Applied Catalysis B:Environmental, 2018, 221:27-35.
    [7] LIU Detao, LI Shibin, ZHANG Peng, et al. Efficient planar heterojunction perovskite solar cells with Li-doped compact TiO2layer[J]. Nano Energy, 2017, 31:462-468.
    [8] KANG Yuyang, YANG Yongqiang, YIN Lichang, et al. Selective breaking of hydrogen bonds of layered carbon nitride for visible light photocatalysis[J]. Advanced Materials, 2016, 28(30):6471-6477.
    [9] LI Hao, LI Jie, AI Zhihui, et al. Oxygen vacancy-mediated photocatalysis of BiOCl:reactivity, selectivity, and perspectives[J].Angewandte Chemie:International Edition, 2018, 57(1):122-138.
    [10] ZENG Xiangkang, WANG Zhouyou, WANG Gen, et al. Highly dispersed TiO2nanocrystals and WO3nanorods on reduced graphene oxide:Z-scheme photocatalysis system for accelerated photocatalytic water disinfection[J]. Applied Catalysis B:Environmental, 2017, 218:163-173.
    [11]翟宏菊.齐兵,王立晶,等. Au-TiO2纳米复合材料的合成及其应用研究进展[J].化工新型材料, 2014, 42(9):188-190.ZHAI Hongju, QI Bing, WANG Lijing, et al. Research on synthesis and application in catalysis and detection of Au-TiO2nanocomposites[J]. New Chemical Materials, 2014, 42(9):188-190.
    [12] KELLY Klance, CORONADO Eduardo, ZHAO Linlin, et al. The optical properties of metal nanoparticles:the influence of size, shape,and dielectric environment[J]. Journal of Physical Chemistry B, 2003,107(3):668-677.
    [13] CLAVERO César. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices[J]. Nature Photonics, 2014, 8(2):95-103.
    [14] ZHANG Jianming, JIN Xin, MORALES-GUZMAN Pabloi, et al.Engineering the absorption and field enhancement properties of AuTiO2nanohybrids via whispering gallery mode resonances for photocatalytic water splitting[J]. ACS Nano, 2016, 10(4):4496-4503.
    [15]倪冰楠,陆婷,刘心娟,等.纳米Au/TiO2复合物光催化降解亚甲基蓝[J].环境工程学报, 2014, 8(12):5372-5376.NI Bingnan, LU Ting, LIU Xinjuan, et al. UV photocatalytic reduction of methylene blue by nano Au/TiO2composites[J]. Chinese Journal of Environmental Engineering, 2014, 8(12):5372-5376.
    [16] WANG Jiale, ANDO Romulo, CAMARGO Pedro. Controlling the selectivity of the surface plasmon resonance mediated oxidation of paminothiophenol on Au nanoparticles by charge transfer from UVexcited TiO2[J]. Angewandte Chemie:International Edition, 2015, 54(23):6909-6912.
    [17]韩铁虎. Au/TiO2纳米复合材料光催化性能研究[D].杭州:浙江理工大学, 2016.HAN Tiehu. The study on photocatalytic activities of Au-TiO2nanocomposites[D]. Hangzhou:Zhejiang Sci-Tech University, 2016.
    [18] CAI Jingsheng, HUANG Jianying, LAI Yuekun. 3D Au-decorated BiMoO6nanosheet/TiO2nanotube array heterostructure with enhanced UV and visible-light photocatalytic activity[J]. Journal of Materials Chemistry A, 2017, 5(31):16412-16421.
    [19] XING Xiaofang, FU Hungsung, MIAO Jianwei, et al. Metal-clusterdecorated TiO2nanotube arrays:a composite heterostructure toward versatile photocatalytic and photoelectrochemical applications[J].Small, 2015, 11(5):554-567.
    [20] NGUYEN Nhattruong, ALTOMARE Marco, YOO Jeongeun, et al.Efficient photocatalytic H2evolution:controlled dewetting dealloying to fabricate site selective high activity nanoporous Au particles on highly ordered TiO2nanotube arrays[J]. Advanced Materials, 2015, 27(20):3208-3215.
    [21]尹云超. TiO2纳米管阵列改性及其光电催化性能研究[D].西安:西北大学, 2017.YIN Yunchao. Photoelecttrocatalytic performance research of modified TiO2nanotube array[D]. Xi’an:Northweast University, 2017.
    [22] MARELLI Marcello, EVANGELISTI Claudio, DIAMANTI Maria Vittoria, et al. TiO2nanotubes arrays loaded with ligand-free Au nanoparticles:enhancement in photocatalytic activity[J]. ACS Applied Materials&Interfaces, 2016, 8(45):31051-31058.
    [23] SU Fengli, WANG Tuo, LüRui, et al. Dendritic Au/TiO2nanorod arrays for visible-light driven photoelectrochemical water splitting[J].Nanoscale, 2013, 5(19):9001-9009.
    [24] LUO Jie, LI Deliang, YANG Yan, et al. Preparation of Au/reduced graphene oxide/hydrogenated TiO2nanotube arrays ternary composites forvisible-light-drivenphotoelectrochemicalwatersplitting[J].Journal of Alloys and Compounds, 2016, 661:380-388.
    [25] WANG Weikang, XU Difa, CHENG Bei, et al. Hybrid carbon@TiO2hollow spheres with enhanced photocatalytic CO2reduction activity[J].Journal of Materials Chemisctry A, 2017, 5(10):5020-5029.
    [26] PANG Xinchang, ZHAO Lei, HAN Wei, et al. A general and robust strategy for the synthesis of nearly monodisperse colloidal nanocrystals[J]. Nature Nanotechnology, 2013, 8(6):426-431.
    [27]姚翠萍,王佳壮,王晶,等. Au@TiO2纳米核壳与HMME结合体的制备及其光动力疗效初探[J].光谱学与光谱分析, 2017, 37(12):3670-3676.YAO Cuiping, WANG Jiazhuang, WANG Jing, et al. Preparation of Au@TiO2-HMME and its photodynamic efficiency[J]. Spectroscopy and Spectral Analysis, 2017, 37(12):3670-3676.
    [28] GOEBL James, JOO Ji Bong, DAHL Michael, et al. Synthesis of tailored Au@TiO2core-shell nanoparticles for photocatalytic reforming of ethanol[J]. Catalysis Today, 2014, 225:90-95.
    [29] DINH Caothang, YEN Hoang, KLEITZ Freddy, et al. Threedimensional ordered assembly of thin-shell Au/TiO2hollow nanospheres for enhanced visible-light driven photocatalysis[J].Angewandte Chemie:International Edition, 2014, 53(26):6618-6623.
    [30] ZHENG Dajiang, PANG Xinchang, WANG Mengye, et al.Unconventional route to hairy plasmonic/semiconductor core/shell nanoparticles with precisely controlled dimensions and their use in solar energy conversion[J]. Chemistry of Materials, 2015, 27(15):5271-5278.
    [31]董任峰.催化型微纳马达的制备与性能[D].广州:华南理工大学,2016.DONGRenfeng.Catalyticmicro/nanomotors:fabricationandperformance[D]. Guangzhou:South China University of Technology, 2016.
    [32] DONG Renfeng, ZHANG Qilu, GAO Wei, et al. Highly efficient lightdriven TiO2-Au Janus micromotors[J]. ACS Nano, 2016, 10(1):839-844.
    [33] JANG Bumjin, HONG Ayoung, KANG Haeun, et al. Multiwavelength light-responsive Au/B-TiO2Janus micromotors[J]. ACS Nano, 2017,11(6):6146-6154.
    [34] SRIDHAR Varun, PARK Byung-Wook, SITTI Metin. Light-driven Janus hollow mesoporous TiO2–Au microswimmers[J]. Advanced Functional Materials. 2018, 28(25):1-8.
    [35] WU Yefei, DONG Renfeng, ZHANG Qilu, et al. Dye-enhanced selfelectrophoretic propulsion of light-driven TiO2–Au Janus micromotors[J]. Nano-Micro Lett, 2017, 9(3):1-12.
    [36] WU Binghui, LIU Deyu, MUBEEN Syed, et al. Anisotropic growth of TiO2onto gold nanorods for plasmon enhanced hydrogen production from water reduction[J]. Journal of American Chemical Society, 2016,138(14):1114-1117.
    [37]孙玉泉.哑铃状Au棒/TiO2的制备及其可见光催化分解水研究[J].辽宁化工, 2017, 46(9):868-869.SUN Yuquan. Synthesis of dumbbell-shaped Au-TiO2hybrids and their application in photocatalytic water reduction reaction[J]. Liaoning Chemical Industry, 2017, 46(9):868-869.
    [38] LIU Xueqin, IOCOZZZIA James, WANG Yang, et al. Noble metalmetal oxide nanohybrids with tailored nanostructures for efficient solar energy conversion, photocatalysis and environmental remediation[J].Energy&Environmental Science, 2017, 10(2):402-434.
    [39] WANGChanglong,ASTRUCDidier.Nanogoldplasmonicphotocatalysis for organic synthesis and clean energy conversion[J]. Chemical Society Reviews, 2014, 43(20):7188-7216.
    [40]冯聪,余志超,王新强,等.金纳米粒子的尺寸和含量对Au/TiO2纤维的紫外和可见光的光催化性能优化研究[C].//中国化学会.中国化学会第30届学术年会摘要集-第二十七分会:光化学.大连:中国化学会. 2016:34.FENG Cong, YU Zhichao, WANG Xinqiang, et al. Enhanced photocatalytic performance of Au/TiO2nanofibers by precisely manipulating the dosage and size of Au nanoparticles under ultraviolet and visible light[C].//Chinese Chemical Society. Abstract of the 30th Academic Annual Conference of Chinese Chemical Society-chapter27:photochemistry. Dalian:Chinese Chemical Society. 2016:34.
    [41] YOO Seon Mi, RAWAL Sherbahadur, LEE Jieun. Size-dependence of plasmonic Au nanoparticles in photocatalytic behavior of Au/TiO2and Au@SiO2/TiO2[J]. Applied Catalysis A:General, 2015, 499:47-54.
    [42] YAMADA Kunihiro, MIYAJIMA Ken, FUMITAKA Mafune.Thermionic emission of electrons from gold nanoparticles by nanosecond pulse-laser excitation of interband[J]. Journal of Physical Chemistry C, 2007, 111(30):11246-11251.
    [43] LINK Stephan, EL-SAYED Mostafa. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles[J]. Journal of Physical Chemistry B, 1999, 103(21):4212-4217.
    [44] BERA Sandipan, LEE Ji Eun, RAWAL Sher Bahadur, et al. Sizedependent plasmonic effects of Au and Au@SiO2nanoparticles in photocatalytic CO2conversion reaction of Pt/TiO2[J]. Applied Catalysis B:Environmental, 2016, 199:55-63.
    [45] CHRISTOPHER Phillip, XIN Hongliang, MARIMUTHU Andiappan,et al. Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures[J]. Nature Materials, 2012, 11(12):1044-1050.
    [46] ZHANG Xingguang, KE Xuebin, ZHU Huaiyong. Zeolite-supported gold nanoparticles for selective photooxidation of aromatic alcohols under visible-light irradiation[J]. Chemistry:A European Journal,2012, 18(26):8048-8056.
    [47] CHOI Jinyoung, SUNG Younghoon, CHOI Hakjong, et al. Fabrication of Au nanoparticle-decorated TiO2nanotube arrays for stable photoelectrochemical water splitting by two-step anodization[J].Ceramics International, 2017, 43(16):14063-14067.
    [48]王雷阳,菅傲群,桑胜波,等. Au/TiO2薄膜的制备及等离子体光催化性能研究[J].化工新型材料, 2018, 46(4):91-93.WANG Leiyang, JIAN Aoqun, SANG Shengbo, et al. Preparation and plasmonic photocatalytic property of Au/TiO2thin film[J]. New Chemical Materials, 2018, 46(4):91-93.
    [49]孔少奇,宋选民,孙泽东,等.磁控溅射制备的Au-TiO2纳米棒阵列的光降解研究[J].稀有金属材料与工程, 2018, 47(4):1113-1118.KONG Shaoqi, SONG Xuanmin, SUN Zedong,et al. Well-aligned Au/TiO2nanorods arrays for the photodegradation of MB by magnetron sputtering[J]. Rare Metal Materials and Engineering, 2018, 47(4):1113-1118.
    [50] MISRA Shikhar, LI Leigang, JIAN Jie, et al. Tailorable Au nanoparticles embedded in epitaxial TiO2thin films for tunable optical properties[J]. ACS Applied&Materials Interfaces, 2018, 10(38):32895-32902.
    [51] YOSHIDA Takehito, WATANABE Tei, KIUCHI Fumito, et al. Pulsedlaser-deposited TiO2nanocrystalline films supporting Au nanoparticles forvisible-light-operatingplasmonicphotocatalysts[J].AppliedPhysics A:Materials Science&Processing, 2016, 122(5):510.
    [52]高溢,刘佳雯,李中华. Au/TiO2纳米光催化剂的制备及光催化性能研究[J].化学工程师, 2016(2):1-3, 29.GAO Yi, LIU Jiawen, LI Zhonghua. Preparation and photocatalytic properties of Au/TiO2nano-photocatalysts[J]. Chemical Engineer, 2016(2):1-3, 29.
    [53] MOMENI Mohamadmohsen, GHAYEB Yousef. Fabrication,characterization and photocatalytic properties of Au/TiO2-WO3nanotubular composite synthesized by photo-assisted deposition and electrochemical anodizing methods[J]. Journal of Molecular Catalysis A:Chemical, 2016, 417:107-115.
    [54] BIAN Zhenfeng, TACHIKAWA Takashi, ZHANG Peng, et al. Au/TiO2superstructure-based plasmonic photocatalysts exhibiting efficient charge separation and unprecedented activity[J]. Journal of American Chemical Society, 2014, 136(1):458-465.
    [55] LI Yongkun, YU Hongmei, ZHANG Changkun, et al. Enhancement of photoelectrochemical response by Au modified in TiO2nanorods[J].International Journal of Hydrogen Energy, 2013, 38(29):13023-13030.
    [56] YUN Juyoung, HWANG Sunhye, JANG Jyongsik. Fabrication of Au@Ag core/shell nanoparticles decorated TiO2hollow structure for efficient light-harvesting in dye-sensitized solar cells[J]. ACS Applied Materials&Interfaces, 2015, 7(3):2055-2063.
    [57]祁洪飞,刘大博,戴松喦,等. Au/TiO2阵列材料的制备及其光催化性能研究[J].贵金属, 2017, 38(s1):116-119.QI Hongfei, LIU Dabo, DAI Songyan, et al. Preparation and photocatalysis performance of Au/TiO2array films[J]. Precious Metals,2017, 38(s1):116-119.
    [58] ZHANG Xing, LIU Yang, LEE Shuittong, et al. Coupling surface plasmon resonance of gold nanoparticles with slow-photon-effect of TiO2photoniccrystalsforsynergisticallyenhancedphotoelectrochemical water splitting[J]. Energy&Environmental Science, 2014, 7(4):1409-1419.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700