用户名: 密码: 验证码:
运用理想光子禁带模型实现对激发态原子系统演化的调控
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Control of evolutionary atomic system of excited atom by using ideal photonic band-gap model
  • 作者:张斯淇 ; 陆景彬 ; 刘晓静 ; 刘继平 ; 李宏 ; 梁禺 ; 张晓茹 ; 刘晗 ; 吴向尧 ; 郭义庆
  • 英文作者:Zhang Si-Qi;Lu Jing-Bin;Liu Xiao-Jing;Liu Ji-Ping;Li Hong;Liang Yu;Zhang Xiao-Ru;Liu Han;Wu Xiang-Yao;Guo Yi-Qing;College of Physics, Jilin University;College of Physics, Jilin Normal University;School of Physics, Northeast Normal University;Institute of High Energy Physics, Chinese Academy of Siences;
  • 关键词:量子调控 ; 动态环境 ; 激发态原子
  • 英文关键词:quantum control;;dynamic surroundings;;excited atom
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:吉林大学物理学院;吉林师范大学物理学院;东北师范大学物理学院;中国科学院高能物理研究所;
  • 出版日期:2018-04-09 13:07
  • 出版单位:物理学报
  • 年:2018
  • 期:v.67
  • 基金:吉林省科技发展计划(批准号:20130101031JC)资助的课题~~
  • 语种:中文;
  • 页:WLXB201809016
  • 页数:8
  • CN:09
  • ISSN:11-1958/O4
  • 分类号:140-147
摘要
通过调节动静态理想光子禁带模型库的结构参数,研究了初态处于激发态的两能级原子系统的演化.在静态无调制下研究理想光子禁带模型库环境的半宽度、中心谐振频率及比重对原子布居数演化的影响.在理想光子禁带库环境的中心共振频率受动态调制下,其调制形式分别取为:矩形单次脉冲、矩形周期性脉冲和缓变连续周期.在此基础上讨论动态调制形式的不同对原子布居数演化的影响.无论怎样的动态调制形式,衰减抑制在原子系统的演化过程还是有较明显的体现.这样就使得利用环境变化对原子布居数和原子系统相干性演化调制的想法得以实现.
        The evolution of two-level atomic system, in which the initial state is excited state, is investigated by adjusting the structural parameters of the dynamic and static ideal photonic band-gap environment reservoir. In a static state(no modulation), we study the effects of half width, center resonant frequency, and specific gravity on the evolution of energy level population. The results show that when the half width or the specific gravity decreases, in the atomic system there happens decoherence, and the energy dissipation to the outside becomes slower. When the center resonant frequency increases, there exists no resonance between the library central resonant frequency and the atom transition frequency, then the attenuation suppression effect occurs, and the time of atomic attenuation to ground state is longer.An actual quantum system is not isolated, so it is inevitable that it interacts with its ambient environment. Owing to the influence of environment, in the system there appears an irreversible quantum decoherence phenomenon. Therefore,how to effectively suppress the decoherence of quantum system becomes an important problem in quantum information science. Linington and Garraway(2008 Phys. Rev. A 77 033831) pointed out that the evolution process of a twolevel atom quantum state can be manipulated by a dynamic dissipative environment. So, we use the dynamic cavity environment to control the evolution of spontaneous emission from an excited two-level atom. The dynamic modulation form for the center resonant frequency of the ideal photonic band-gap environment reservoir includes the rectangular single pulse, rectangular periodic pulse, and slow continuous period. Owing to the periodic modulation, the atoms are affected by different environments. On this basis, the influence of dynamic modulation form on the atomic population evolution is discussed. It is found that no matter what form the dynamic modulation is in, the attenuation inhibition in the evolution of atomic system is evident. These conclusions make the idea of using the environmental change to modulate the coherent evolution of atomic system become true.
引文
[1]Yang Y P,Fleischhauer M,Zhu S Y 2003 Phys.Rev.A68 022103
    [2]Fisher M C,Medina B G,Raizen M G 2001 Phys.Rev.Lett.87 040402
    [3]Paspalakis E,Knight P L 2000 J.Modern Opt.47 1025
    [4]Purcell E M,Torrey H C,Pound R V 1946 Phys.Rev.69 37
    [5]Yang Y P,Zhu S Y 2000 Phys.Rev.A 61 043809
    [6]Wang X H,Kivshar Y S,Gu B Y 2004 Phys.Rev.Lett.93 073901
    [7]Sun X D,Jiang X Q 2008 Opt.Lett.33 110
    [8]Lodahl P,van Driel A F,Nikblaev I S,Irman A,Overgaag K,Vanmaekelbergh D,Vos W L 2004 Nature 430654
    [9]Birnbaum K M,Boca A,Miller R,Boozer A D,Northup T E,Kimble H J 2005 Nature 436 87
    [10]Wilk T,Webster S C,Kuhn A,Rempe G 2007 Science317 488
    [11]Lin L H 2009 Chin.Phys.B 18 588
    [12]Lu J H,Meng Z M,Liu H Y,Feng T H,Dai Q F,Wu L J,Guo Q,Hu W,Lan S 2009 Chin.Phys.B 18 4333
    [13]Wu C W,Han Y,Deng Z J,Liang L M,Li C Z 2010Chin.Phys.B 19 010313
    [14]Vahala K J 2003 Nature 424 839
    [15]Spillane S M,Kippenberg T J,Vahala K J,Goh K W,Wilcut E,Kimble H J 2005 Phys.Rev.A 71 013817
    [16]Xing R,Xie S Y,Xu J P,Yang Y P 2017 Acta Phys.Sin.66 014202(in Chinese)[邢容,谢双媛,许静平,羊亚平2017物理学报66 014202]
    [17]Linington I E,Garraway B M 2008 Phys.Rev.A 77033831
    [18]Garraway B M 1997 Phys.Rev.A 55 2290
    [19]Zhang Y J,Man Z X,Xia Y J,Guo G C 2010 Eur.Phys.J.D 58 397
    [20]Zhang Y J,Han W,Fan H,Xia Y J 2015 Ann.Phys.354 203
    [21]Huang X S,Liu H L,Yang Y P,Shi Y L 2011 Acta Phys.Sin.60 024205(in Chinese)[黄仙山,刘海莲,羊亚平,石云龙2011物理学报60 024205]
    [22]Huang X S,Liu H L 2011 Acta Phys.Sin.60 034205(in Chinese)[黄仙山,刘海莲2011物理学报60 034205]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700