用户名: 密码: 验证码:
松辽盆地嫩江组富有机质页岩有机孔隙成因
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Origin of Organic Pores in the Organic-Rich Shale of Nenjiang Formation,Songliao Basin, China
  • 作者:程璇 ; 徐尚 ; 郝芳 ; 荣辉 ; 杨峰 ; 苟启洋 ; 张爱华
  • 英文作者:Cheng Xuan;Xu Shang;Hao Fang;Rong Hui;Yang Feng;Gou Qiyang;Zhang Aihua;Key Laboratory of Tectonics and Petroleum Resources of Ministry of Education,China University of Geosciences (Wuhan);Faculty of Earth Resources,China University of Geosciences (Wuhan);School of Geosciences,China University of Petroleum;
  • 关键词:有机孔隙成因 ; 富有机质页岩 ; 岩浆侵入作用 ; 松辽盆地
  • 英文关键词:origin of organic pore;;organic-rich shale;;magma intrusion;;Songliao Basin
  • 中文刊名:DZKQ
  • 英文刊名:Geological Science and Technology Information
  • 机构:中国地质大学(武汉)构造与油气资源重点实验室;中国地质大学(武汉)资源学院;中国石油大学(华东)地球科学与技术学院;
  • 出版日期:2019-07-15
  • 出版单位:地质科技情报
  • 年:2019
  • 期:v.38;No.187
  • 基金:国家自然科学基金重大项目(41690134);国家自然科学基金创新研究群体项目(41821002);国家自然科学基金青年基金项目(41702155);; 国家科技重大专项(2016ZX05034002-003)
  • 语种:中文;
  • 页:DZKQ201904008
  • 页数:8
  • CN:04
  • ISSN:42-1240/P
  • 分类号:68-75
摘要
热演化程度是影响页岩有机质孔隙形成演化的重要因素,松辽盆地南部辉绿岩侵入到嫩江组富有机质页岩中,为研究页岩有机孔隙特征提供了天然实验室。通过氩离子抛光和扫描电镜等实验方法,初步探讨了研究区低熟富有机质页岩有机孔隙的特征及其成因:有机孔隙孔径范围为30~500 nm,主峰位于70~130 nm,以大孔为主,孔隙形状主要为圆形或次圆形,呈海绵状聚集分布;页岩样品中的石英和长石等无机矿物呈点接触,发育大量无机孔隙,无机矿物处于早成岩阶段,但岩浆侵入作用促使有机质进入高热演化阶段并形成大量有机孔隙。国内外典型页岩储层的对比表明,压实作用对页岩有机孔隙发育特征有着重要影响,早成岩阶段压实作用较弱,有机孔隙保存较好,大孔的数量和比例较高;中-晚成岩阶段由于埋深较大,强烈的压实作用使页岩孔隙由大孔向中孔和微孔转化。
        The thermal evolution is an important factor affecting the formation and evolution of organic pores in organic-rich shale. The situation of diabase intruding into the organic shale of Nenjiang Formation in the south of Songliao Basin provides a natural laboratory for studying the evolution of organic pores in shale. By means of argon ion polishing and scanning electron microscopy(SEM), we have preliminary investigated the characteristics and origin of the low-mature organic pores of shale in the research area. The organic pore size ranges from 30 to 500 nm, and the peak value is about 70-130 nm, which mainly consists of round or subcircular shape macropore in spongy aggregation distribution. The inorganic minerals such as quartz and feldspar in shale samples are in contact with each other by point and a large number of inorganic pores are developed, which are early diagenetic, but the magmatic intrusions promote the organic matter to enter into the high heat evolution stage and form a large number of organic pores. Contrasting the research of inside and outside typical shale reservoirs, the compaction has an important influence on the development characteristics of organic pores in shale. The compaction is weak in the early diagenetic stage, and the pores of organic matter are well preserved, with high number and proportion of macropores.In the middle-late diagenetic stage, due to the large burial depth, the strong compaction makes the shale pores transform from large pores to medium pores and micro pores.
引文
[1]张金川,金之钧,袁明生.页岩气成藏机理和分布[J].天然气工业,2004,24(7):15-18.
    [2]Curtis M E,Cardott B J,Sondergeld C H,et al.Development of organic porosity in the Woodford Shale with increasing thermal maturity[J].International Journal of Coal Geology,2012,103(23):26-31.
    [3]苟启洋,徐尚,郝芳,等.纳米CT页岩孔隙结构表征方法:以JY-1井为例[J].石油学报,2018,39(11):1253-1261.
    [4]张金川,徐波,聂海宽,等.中国页岩气资源勘探潜力[J].天然气工业,2008,28(6):136-140.
    [5]Loucks R G,Reed R M,Ruppel S C,et al.Morphology,genesis,and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale[J].Journal of Sedimentary Research,2009,79(12):848-861.
    [6]Curtis M E,Sondergeld C H,Ambrose R J,et al.Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging[J].AAPG Bulletin,2012,96(4):665-677.
    [7]Slatt R M,O'Brien N R.Pore types in the Barnett and Woodford gas shales:Contribution to understanding gas storage and migration pathways in fine-grained rocks[J].AAPG Bulletin,2011,95(12):2017-2030.
    [8]Walls J D,Sinclair S W.Eagle Ford shale reservoir properties from digital rock physics[J].First Break,2011,29:97-101.
    [9]Chen J,Xiao X.Evolution of nanoporosity in organic-rich shales during thermal maturation[J].Fuel,2014,129(4):173-181.
    [10]Tian H,Pan L,Zhang T,et al.Pore characterization of organicrich Lower Cambrian shales in Qiannan Depression of Guizhou Province,Southwestern China[J].Marine and Petroleum Geology,2015,62:28-43.
    [11]Pan L,Xiao X,Tian H,et al.A preliminary study on the characterization and controlling factors of porosity and pore structure of the Permian shales in Lower Yangtze region,Eastern China[J].International Journal of Coal Geology,2015,146:68-78.
    [12]Cardott B J,Landis C R,Curtis M E.Post-oil solid bitumen network in the Woodford Shale,USA:A potential primary migration pathway[J].International Journal of Coal Geology,2015,139:106-113.
    [13]Mastalerz M,Schimmelmann A,Drobniak A,et al.Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient:Insights from organic petrology,gas adsorption,and mercury intrusion[J].AAPG Bulletin,2013,97(10):1621-1643.
    [14]Lu J,Ruppel S C,Rowe H D.Organic matter pores and oil generation in the Tuscaloosa marine shale[J].AAPG Bulletin,2015,99(2):333-357.
    [15]Bernard S,Horsfield B,Schulz H M,et al.Geochemical evolution of organic-rich shales with increasing maturity:A STXMand TEM study of the Posidonia Shale(Lower Toarcian,northern Germany)[J].Marine and Petroleum Geology,2012,31:70-89.
    [16]Bernard S,Horsfield B.Thermal maturation of gas shale systems[J].Annual Review of Earth and Planetary Sciences,2014,42(1):635-651.
    [17]L?hr S C,Baruch E T,Hall P A,et al.Is organic pore development in gas shales influenced by the primary porosity and structure of thermally immature organic matter?[J].Organic Geochemistry,2015,87(3):119-132.
    [18]Jarvie D M,Hill R J,Ruble T E,et al.Unconventional shalegas systems:The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment[J].AAPG Bulletin,2007,91(4):475-499.
    [20]Pommer M,Milliken K.Pore types and pore-size distributions across thermal maturity,Eagle Ford Formation,southern Texas[J].AAPG Bulletin,2015,99(9):1713-1744.
    [21]Zhao J H,Jin Z J,Jin Z K,et al.Mineral types and organic matters of the Ordovician-Silurian Wufeng and Longmaxi Shale in the Sichuan Basin,China:Implications for pore systems,diagenetic pathways,and reservoir quality in fine-grained sedimentary rocks[J].Marine and Petroleum Geology,2017,86:655-674.
    [22]Lucy T Ko,Loucks R G,Zhang T W,et al.Pore and pore network evolution of Upper Cretaceous Boquillas(Eagle Ford-equivalent)mudrocks:Results from gold tube pyrolysis experiments[J].AAPG Bulletin,2016,100(11):1693-1722.
    [23]Han Y J,Brian H,Richard W,et al.Oil retention and porosity evolution in organic-rich shales[J].AAPG Bulletin,2017,101(6):807-827.
    [24]Mathia E J,Bowen L,Thomas K M,et al.Evolution of porosity and pore types in organic-rich,calcareous,Lower Toarcian Posidonia Shale[J].Marine and Petroleum Geology,2016,75:117-139.
    [25]秦伟军,郭金瑞.松辽盆地南部断陷层油气勘探领域[J].石油实验地质,2010,32(4):326-329.
    [26]沈安江.松辽盆地南部白垩纪层序地层与岩性地层油气藏勘探[M].北京:石油工业出版社,2006.
    [27]汪新文.中国东北地区中-新生代盆地构造演化与油气关系[M].北京:地质出版社,2007.
    [28]许坤,李瑜.开鲁盆地晚中生代地层[J].地层学杂志,1995,19(2):88-95.
    [29]席党鹏,李罡,万晓樵,等.松辽盆地东南区姚家组-嫩江组一段地层特征与湖泊演变[J].古生物学报,2009,48(3):556-568.
    [30]禚喜准,王琪,朱筱敏,等.松辽盆地南部拗陷期湖盆底形演化及充填序列[J].石油学报,2009,30(4):536-541.
    [31]张顺,付秀丽,张晨晨.松辽盆地姚家组-嫩江组地层层序及沉积演化[J].沉积与特提斯地质,2011,31(2):34-42.
    [32]史洪亮,王同,陈霞,等.川南下古生界高演化页岩成熟度指标[J].断块油气田,2018,25(1):43-47.
    [33]张振苓,邬立言,脱奇,等.烃源岩热解分析参数Tmax异常值的还原[J].石油勘探与开发,2007,34(5):580-584.
    [34]Peters K E.Guidelines for evaluating petroleum source rock using programmed pyrolysis[J].AAPG Bulletin,1986,70(3):318-329.
    [35]仰云峰.川东南志留系龙马溪组页岩沥青反射率和笔石反射率的应用[J].石油实验地质,2016,38(4):466-472.
    [36]刘德汉,史继扬.高演化碳酸盐烃源岩非常规评价方法探讨[J].石油勘探与开发,1994,21(3):113-115.
    [37]Yang R,Hao F,He S,et al.Experimental investigations on the geometry and connectivity of pore space in organic-rich Wufeng and Longmaxi shales[J].Marine and Petroleum Geology,2017,84:225-242.
    [38]陈荣书,何生,王青玲,等.岩浆活动对有机质成熟作用的影响初探:以冀中葛渔城-文安地区为例[J].石油勘探与开发,1989,16(1):29-38.
    [39]何生,陈荣书,兰廷泽.冀中文安斜坡石炭-二叠纪煤系特征及岩浆热力成烃作用[J].地球科学:中国地质大学学报,1992,17(6):699-708.
    [40]万从礼,金强.东营凹陷纯西辉长岩对烃源岩异常生排烃作用研究[J].地球科学与环境学报,2003,25(1):20-25.
    [41]曹学伟,胡文瑄,金之钧,等.临盘油田夏38井区辉绿岩热效应对成烃作用的影响[J].石油与天然气地质,2005,26(3):317-322.
    [42]王民,王岩,卢双舫,等.岩浆侵入体热作用对烃源岩生烃影响的定量表征:以松辽盆地南部英台断陷为例[J].断块油气田,2014,21(2):171-175.
    [43]宋占东.阳信洼陷火成岩对烃源岩生烃作用机理研究[D].青岛:中国石油大学,2009.
    [44]王莉,苗志,王树平,等.松辽盆地南部火山岩识别方法及模式建立[J].天然气工业,2007(增刊1):300-302.
    [45]张晓明,石万忠,徐清海,等.四川盆地焦石坝地区页岩气储层特征及控制因素[J].石油学报,2015,36(8):926-939,953.
    [46]杨锐,何生,胡东风,等.焦石坝地区五峰组-龙马溪组页岩孔隙结构特征及其主控因素[J].地质科技情报,2015,34(5):105-113.
    [47]Yang R,He S,Hu Q,et al.Pore characterization and methane sorption capacity of over-mature organic-rich Wufeng and Longmaxi shales in the southeast Sichuan Basin,China[J].Marine and Petroleum Geology,2016,77:247-261.
    [48]徐勇,吕成福,陈国俊,等.川东南地区志留系龙马溪组页岩孔隙结构特征[J].地质科技情报,2015,34(6):108-115.
    [49]侯宇光,何生,易积正,等.页岩孔隙结构对甲烷吸附能力的影响[J].石油勘探与开发,2014,41(2):248-256.
    [50]陈晓智,陈桂华,肖钢,等.北美TMS页岩油地质评价及勘探有利区预测[J].中国石油勘探,2014,19(2):77-84.
    [51]Bernard S,Wirth R,Schreiber A,et al.Formation of nanoporous pyrobitumen residues during maturation of the Barnett Shale(Fort Worth Basin)[J].International Journal of Coal Geology,2012,103:3-11.
    [52]昝博文,刘树根,白志强.等.川西南威远地区龙马溪组页岩储层孔隙发育特征及控制因素分析[J].地质科技情报,2017,36(2):70-79.
    [53]邱嘉文,刘树根,孙玮,等.四川盆地周缘五峰组-龙马溪组黑色页岩微孔特征[J].地质科技情报,2015,34(2):78-86.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700