用户名: 密码: 验证码:
大型复杂结构健康精准体检方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Precise structural health diagnosis of large-scale complex structures
  • 作者:朱宏平 ; 翁顺 ; 王丹生 ; 孙燕华 ; 夏勇 ; 高飞
  • 英文作者:ZHU Hongping;WENG Shun;WANG Dansheng;SUN Yanhua;XIA Yong;GAO Fei;School of Civil Engineering and Mechanics, Huazhong University of Science and Technology;Mechanical Science and Engineering, Huazhong University of Science and Technology;Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University;
  • 关键词:大型复杂结构 ; 健康精准体检 ; 损伤探测 ; 压电阻抗 ; 损伤漏磁场 ; 安全性能
  • 英文关键词:large-scale complex structure;;structural health diagnose;;damage detection;;piezoelectric impedance;;damage magnetic field of steel;;safty performance
  • 中文刊名:JZJB
  • 英文刊名:Journal of Building Structures
  • 机构:华中科技大学土木工程与力学学院;华中科技大学机械科学与工程学院;香港理工大学土木及环境工程学系;
  • 出版日期:2018-12-05 16:43
  • 出版单位:建筑结构学报
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金项目(51629801,51578260,51778258);; 国家重点研发计划(2016YFC0802002)
  • 语种:中文;
  • 页:JZJB201902021
  • 页数:12
  • CN:02
  • ISSN:11-1931/TU
  • 分类号:219-230
摘要
精确的安全检测与诊断评估是保证结构安全与长寿命服役的基础。为此,提出大型复杂结构的健康精准体检方法。建立了区域子结构与整体结构特征参数的定量关系式,推导区域子结构灵敏度计算方程,提出基于灵敏度分析的复杂结构损伤关键区域确定方法。提出了关键区域内部混凝土探伤的压电智能精准探测方法,通过压电阻抗的统计指标长距离、高精度表征混凝土内部损伤状况;建立关键区域内部钢结构磁电智能精准探伤方法,推导C形开环电流空间域磁场的聚集和调控方程,并在此基础上研发了开环式电磁磁化装置。基于子结构有限元模型修正的损伤识别方法,依据关键区域精准损伤精确诊断评估整体结构安全状态。研究结果表明:该健康体检方法精准探测结构内部微损伤,仅需关键区域损伤即可精确诊断评估结构安全性能,全寿命周期记录并动态评估大型结构各时期安全状况,为大型复杂结构安全诊断评估提供可靠的技术支撑。
        Accurate structural testing and diagnosis are the basis for structural safety and long life service. A ‘health diagnosis' technique for large-scale complex structures is proposed in this paper. First, the quantitative relationship of characteristic parameters between the regional substructure and the global structure is established. The sensitivity formulas of the substructures to structural parameters are deduced. The method for determining the critical areas of damage in large-scale structures based on the sensitivity analysis is proposed. Afterwards, a piezoelectricity based damage detection method is developed to precisely and intelligently identify the damage in the interior of concrete. This method uses statistical indicators of piezoelectric impedance to assess the damage status in the interior area of concrete structure with a long-distance and high-precision. An open magnetizing technique is established for the damage detection of steel. The aggregation and regulation equations of the C-type open-loop magnetic field in space domain is deduced. Based on this method, a C-type open-loop electromagnetic magnetization device is developed. Finally, based on substructure-based model updating, the accurate damage detection of the local critical area is used to assess the structural conditions of the global structure. The research results show that, the ‘health diagnosis' technique can detects the internal micro-damage of the structure, and accurately evaluate the structural safety performance by only requiring damage detection of critical area. The proposed technique records and dynamically evaluates the safety status of large-scale structures throughout the life cycle, providing high-accuracy safety assessment for large-scale complex structures.
引文
[1] 丁洁民, 吴宏磊, 赵昕. 我国高度250m以上超高层建筑结构现状与分析进展[J]. 建筑结构学报, 2014, 35(3): 1-7. (DING Jiemin, WU Honglei, ZHAO Xin. Current situation and discussion of structural design for super high-rise buildings above 250 m in China[J]. Journal of Building Structures, 2014, 35(3): 1-7. (in Chinese))
    [2] 《中国公路学报》编辑部. 中国桥梁工程学术研究综述:2014[J]. 中国公路学报, 2014, 27(5): 1-96. (Editors of China Journal of Highway and Transport. Review on China’s bridge engineering research: 2014[J]. China Journal of Highway and Transport, 2014, 27(5): 1-96. (in Chinese))
    [3] 李宏男, 高东伟, 伊廷华. 土木工程结构健康监测系统的研究状况与进展[J]. 力学进展, 2008, 38(2): 151-166. (LI Hongnan, GAO Dongwei, YI Tinghua. Advances in structural health monitoring systems in civil engineering[J]. Advances in Mechanics, 2008, 38(2): 151-166. (in Chinese))
    [4] 熊海贝, 张俊杰. 超高层结构健康监测系统概述[J]. 结构工程师, 2010, 26(1): 144-150. (XIONG Haibei, ZHANG Junjie. Summary of health monitoring system for skyscrapers[J]. Structural Engineers, 2010, 26(1): 144-150. (in Chinese))
    [5] FARRAR C R, WORDEN K. An introduction to structural health monitoring[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2007, 365(1851): 303-315.
    [6] NI Y Q, XIA Y, LIN W, et al. SHM benchmark for high-rise structures: a reduced-order finite element model and field measurement data[J]. Smart Structures and Systems, 2012, 10(4/5): 411- 426.
    [7] 贺映候, 李秋胜, 朱宏平, 等. 深圳平安金融中心结构健康监测系统应用[J]. 土木工程与管理学报, 2017, 34(5): 96-103. (HE Yinghou, LI Qiusheng, ZHU Hongping, et al. Applied on the structure health monitoring system in Ping-An financial centre[J]. Journal of Civil Engineering and Management, 2017, 34(5): 96-103. (in Chinese))
    [8] 缪长青, 李爱群, 冯兆祥. 润扬大桥结构健康监测系统设计研究[J]. 世界桥梁, 2006, 3(1): 63- 66. (MIAO Changqing, LI Aiqun, FENG Zhaoxiang. Design and research of structural health monitoring system for runyang bridge[J]. World Bridge, 2006, 3(1): 63- 66.(in Chinese))
    [9] 李惠, 欧进萍. 斜拉桥结构健康监测系统的设计与实现(Ⅱ):系统实现[J]. 土木工程学报, 2006, 39(4): 45-53. (LI Hui, OU Jinping. Design and implementation of health monitoring systems for cable-stayed bridges (Ⅱ): implementations[J]. China Civil Engineering Journal,2006,39(4):45-53.(in Chinese))
    [10] 李惠, 鲍跃全, 李顺龙, 等. 结构健康监测数据科学与工程[J]. 工程力学, 2015, 32(8): 1-7. (LI Hui, BAO Yuequan, LI Shunlong, et al. Date science and engineering for structure health monitoring[J]. Engineering Mechanics,2015,32(8):1-7.(in Chinese))
    [11] 李爱群, 丁幼亮, 王浩, 等. 桥梁健康监测海量数据分析与评估:“结构健康监测”研究进展[J]. 中国科学技术科学, 2012, 42(8): 972-984. (LI Aiqun, DING Youliang, WANG Hao, et al. Analysis and assessment of mass data of bridge health monitoring: research progress of structural health monitoring[J]. China Science and Technology,2012,42(8):972-984.
    [12] 朱宏平, 余璟, 张俊兵. 结构损伤动力检测与健康监测研究现状与展望[J]. 工程力学, 2011, 28(2): 1-12. (ZHU Hongping, YU Jing, ZHANG Junbing. A summary review and advantages of vibration-based damage identification methods in structural health monitoring[J]. Engineering Mechanics, 2011, 28(2): 1-12. (in Chinese))
    [13] KLERK D D, RIXEN D J, VOORMEEREN S N. General framework for dynamic substructuring: history, review, and classification of technique[J]. AIAA Journal, 2008, 46(5): 1169-1181.
    [14] WENG S, XIA Y, XU Y L, ZHU H P. Substructure based approach to finite element model updating[J]. Computers and Structures, 2011, 89(9/10): 772-782.
    [15] WENG S, TIAN W, ZHU H P, XIA Y. Dynamic condensation approach to calculation of structural responses and response sensitivities[J]. Mechanical Systems & Signal Processing, 2017, 88(1): 302-317.
    [16] ZHU H P, MAO L, WENG S. Calculation of dynamic response sensitivity to substructural damage identification under moving load[J]. Advances in Structural Engineering, 2013, 16(9): 1621-1631.
    [17] NELSON R B. Simplified calculation of eigenvector derivatives[J].AIAA Journal,1976,14(9):1201-1205.
    [18] 周述美, 鲍跃全, 李惠. 基于子结构灵敏度分析的传感器优化布置[J]. 地震工程与工程振动, 2014, 34(4): 242-247. (ZHOU Shumei, BAO Yuequan, LI Hui. Optimal sensor placement based on substructure sensitivity analysis[J]. Earthquake Engineering and Engineering Dynamics, 2014, 34(4): 242-247. (in Chinese))
    [19] WENG S, XIA Y, XU Y L, ZHU H P. Inverse substructure method for model updating of structures[J]. Journal of Sound and Vibration, 2012, 331(25): 5449-5468.
    [20] 林维正. 混凝土超声检测的进展[J]. 无损检测, 2002, 24(10): 428- 431. (LIN Weizheng. Development of ultrasonic testing of concrete[J]. Nonde Structive Testing, 2002, 24(10): 428- 431. (in Chinese))
    [21] 朱宏平. 结构损伤检测的智能方法[M]. 北京: 人民交通出版社, 2009: 1-58. (ZHU Hongping. Intelligent methods of structural damage identification[M]. Beijing: China Communication Press, 2009: 1-58. (in Chinese))
    [22] SIROHI J, CHOPRA I. Fundamental behavior of piezoceramic sheet actuators[J]. Journal of Intelligent Material Systems & Structures, 2000, 11(1): 47- 61.
    [23] WANG D S, LI Z, ZHU H P. A new three-dimensional electromechanical impedance model for an embedded dual-PZT transducer[J]. Smart Materials and Structures, 2016, 25(7): 075002.
    [24] WANG D S, ZHANG J B, ZHU H P. Embedded electromechanical impedance and strain sensors for health monitoring of a concrete bridge[J]. Shock and Vibration, 2015,2015: 821395.
    [25] ANNAMDAS V G M, RADHIKA M A. Electromechanical impedance of piezoelectric transducers for monitoring metallic and non-metallic structures: a review of wired, wireless and energy-harvesting methods[J]. Journal of Intelligent Material Systems and Structures, 2013, 24(9): 1021-1042.
    [26] POWELL M J D. Radial basis functions for multivariable interpolation: a review[M]. Oxford: Clarendon Press, 1987: 21-100.
    [27] 阎平凡. 张长水. 人工神经网络与模拟进化计算[M]. 北京:清华大学出版社, 2005: 100-150. (YAN Pingfan, ZHANG Changshui. Artificial neural network and simulated evolutionary computation[M]. Beijing: Tsinghua University Press, 2005: 100-150. (in Chinese))
    [28] PARK S, LEE J J, YUN C B. Electro-mechanical impedance-based wireless structural health monitoring using PCA-data compression and k-means clustering algorithm[J]. Journal of Intelligent Material Systems and Structures, 2008, 19(4): 509-520.
    [29] 张其林, 李晗, 杨晖柱, 等. 钢结构健康监测技术的发展和研究[J]. 施工技术, 2012, 41(14): 13-19. (ZHANG Qilin, LI Han, YANG Huizhu, et al. Development and study of steel structures health monitoring techniques[J]. Construction Technology, 2012, 41(14): 13-19. (in Chinese))
    [30] 黄松岭, 孙燕华,康宜华. 现代漏磁无损检测[M]. 北京:机械工业出版社,2017: 67-120. (HUANG Songling, SUN Yanhua, KANG Yihua. Modern magnetic flux leakage nondestructive testing[M]. Beijing: China Machinery Industry Press, 2017: 67-120. (in Chinese))
    [31] 孙燕华, 康宜华, 邱晨. 永磁扰动无损检测技术[M]. 武汉: 华中科技大学出版社, 2012: 13- 47. (SUN Yanhua, KANG Yihua, QIU Chen. Nondestructive testing technology based on permanent magnetic perturbation[M]. Wuhan: Huazhong University of Science and Technology Press, 2012: 13- 47. (in Chinese))
    [32] SUN Yanhua, WU Jianbo, FENG Bo, et al. An opening electric-MFL detector for the NDT of in-service mine hoist wire[J]. IEEE Sensors Journal, 2014, 14(6): 2042-2047.
    [33] SUN Yanhua, LIU Shiwei, Deng Zhiyang, et al. Magnetic flux leakage structural health monitoring of concrete rebar using an open electromagnetic excitation technique[J]. Structural Health Monitoring, 2017, 17(2): 121-134.
    [34] SUN Yanhua, LIU Shiwei, LI Rui, et al. A new magnetic flux leakage sensor based on open magnetizing method and its on-line automated structural health monitoring methodology[J]. Structural Health Monitoring, 2015, 14(6): 583- 603.
    [35] XU Jiang, WU Xinjun, CHENG Cheng, et al. A magnetic flux leakage and magnetostrictive guided wave hybrid transducer for detecting bridge cables[J]. Sensors, 2012, 12(1):518-533.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700