用户名: 密码: 验证码:
油脂的代谢途径及提高油料作物含油量的育种策略
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Metabolic Pathway of Lipid and Breeding Strategies for Improving Oil Content in Oil Crops
  • 作者:张云虹 ; 张永吉 ; 苏芃 ; 张甜 ; 周如美 ; 张永泰
  • 英文作者:Zhang Yunhong;Zhang Yongji;Su Peng;Zhang Tian;Zhou Rumei;Zhang Yongtai;Jiangsu Lixiahe District Institute of Agricultural Science;
  • 关键词:油料作物 ; 三酰甘油 ; 脂肪酸 ; 含油量
  • 英文关键词:Oil crops;;Triacylglycerol;;Fatty acid;;Oil content
  • 中文刊名:FZZW
  • 英文刊名:Molecular Plant Breeding
  • 机构:江苏里下河地区农业科学研究所;
  • 出版日期:2019-05-14
  • 出版单位:分子植物育种
  • 年:2019
  • 期:v.17
  • 基金:国家油菜现代产业技术体系(CARS-12);; 扬州市科技计划项目(YZ2015107)共同资助
  • 语种:中文;
  • 页:FZZW201909046
  • 页数:6
  • CN:09
  • ISSN:46-1068/S
  • 分类号:326-331
摘要
油料作物是人们日常生活所需植物油的重要来源。近年来,中国食用植物油消费量持续增长,需求缺口不断扩大,因此提高油料作物单位面积的产量和培育高含油量的油料作物是发展食用油市场的必经之路。通过对模式植物的研究,植物油脂的代谢途径及其调控机制都已有较深的了解,这些研究不但可以揭示含油量差异的原因,也可以挖掘含油量增加的潜力,具有广泛的应用前景。本研究从分析三酰甘油代谢的生物机制入手,讨论提高油料作物种子含油量的不同策略。油料作物基因水平的研究也正在大量进行,为创制优良的油料作物种质提供育种策略和技术手段。本研究以期通过上述的评述与展望为油料作物的育种研究提供参考。
        Oil crop s are an important source of vegetable oils for people's daily life. In recent years, the consumption of edible vegetable oil in China has continued to grow, and the demand gap has been expanding.Therefore, in order to develop the edible oil market, it is necessary to improve oil yield per unit area and cultivate oil crops with high oil content. Through the study of model plants, the metabolic pathway of lipid and its regulation mechanism have been deeply understood. These studies can not only reveal the causes of the difference in oil content, but also tap the potential of oil content increase, which has broad application prospects. This paper started with the analysis of the biological mechanism of triacylglycerol metabolism and discussed different strategies for improving the oil content of oil crop seeds. Researches on the genetic level of oil crops are also being carried out in large numbers, which would provide breeding strategies and technical means for creating excellent oil crop germplasm. This paper hoped to provide reference for the research of oil crop breeding through the above reviews and prospects.
引文
Baud S.,Mendoza M.S.,To A.,Harscoet E.,Lepiniec L.,and Dubreucq B.,2007,WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis,Plant J.,50(5):825-838
    Baud S.,Wuillème S.,To A.,Rochat C.,and Lepiniec L.,2009,Role of WRINKLED1 in the transcriptional regulation of glycolytic and fatty acid biosynthetic genes in Arabidopsis,Plant J.,60(6):933-947
    Burns M.J.,Barnes S.R.,Bowman J.G.,Clarke M.H.,Werner C.P.,and Kearsey M.J.,2003,QTL analysis of an intervarietal set of substitution lines in Brassica napus:(i)seed oil content and fatty acid composition,Heredity,90(1):39-48
    Carrera E.,Holman T.,Medhurst A.,Peer W.,Schmuths H.,Footitt S.,Theodoulou F.L.,and Holdsworth M.J.,2007,Gene expression profiling reveals defined functions of the ATP-binding cassette transporter COMATOSE late in phase II of germination,Plant Physiol.,143(4):1669-1679
    Cernac A.,and Benning C.,2004,WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis,Plant J.,40(4):575-585
    Chia T.Y.,Pike M.J.,and Rawsthorne S.,2005,Storage oil breakdown during embryo development of Brassica napus(L.),J.Exp.Bot.,56(415):1285-1296
    Eastmond P.J.,2006,SUGAR-DEPENDENT1 encodes a patatin domain triacylglycerol lipase that initiates storage oil breakdown in germinating Arabidopsis seeds,Plant Cell,18(3):665-675
    Fu Y.,Zhang D.Q.,Gleeson M.,Zhang Y.F.,Lin B.G.,Hua S.J.,Ding H.D.,Frauen M.,Li J.N.,Qian W.,and Yu H.S.,2017,Analysis of QTL for seed oil content in Brassica napus by association mapping and QTL mapping,Euphytica,213(1):17
    Gai Y.,Liu L.,and He C.F.,2009,The key synthesis enzyme D6D ofγ-linolenic acid in plant,Jiyinzuxue Yu Yingyong Shengwuxue(Genomics and Applied Biology),28(4):809-814(盖燕,刘蕾,何聪芬,2009,植物中γ-亚麻酸合成关键酶-Δ6-脂肪酸脱氢酶,基因组学与应用生物学,28(4):809-814)
    Graham I.A.,2008,Seed storage oil mobilization,Annu.Rev.Plant Biol.,59:115-142
    Haughn G.W.,and Western T.L.,2012,Arabidopsis seed coat mucilage is a specialized cell wall that can be used as a model for genetic analysis of plant cell wall structure and function,Front.Plant Sci.,3:64
    Jako C.,Kumar A.,Wei Y.,Zou J.,Barton D.L.,Giblin E.M.,Covello P.S.,and Taylor D.C.,2001,Seed-specific over-expression of an Arabidopsis cDNA encoding a diacylglycerol acyltransferase enhances seed oil content and seed weight,Plant Physiol.,126(2):861-874
    Kanai M.,Mano S.,Kondo M.,Hayashi M.,and Nishimura M.,2016,Extension of oil biosynthesis during the mid-phase of seed development enhances oil content in Arabidopsis seeds,Plant Biotechnol.J.,14(5):1241-1250
    Kelly A.A.,Shaw E.,Powers S.J.,Kurup S.,and Eastmond P.J.,2013,Suppression of the SUGAR-DEPENDENT1 triacylglycerol lipase family during seed development enhances oil yield in oilseed rape(Brassica napus L.),Plant Biotechnol.J.,11(3):355-361
    Li D.R.,Tian J.H.,Chen W.J.,Zhang W.X.,Li Y.H.,and Wang H.,2011,Breeding technologies and germplasm innovation on extra-high-oil content in Brassica napus,Xibei Nongye Xuebao(Acta Agriculturae Boreali-occidentalis Sinica),20(12):83-87(李殿荣,田建华,陈文杰,张文学,李永红,王灏,2011,甘蓝型油菜特高含油量育种技术与资源创新,西北农业学报,20(12):83-87)
    Li H.W.,Zhao T.J.,Wang Y.F.,Yu D.Y.,Chen S.Y.,Zhou R.B.,and Gai J.Y.,2011,Genetic structure composed of additive QTL,epistatic QTL pairs and collective unmapped minor QTL conferring oil content and fatty acid components of soybeans,Euphytica,182(1):117-132
    Lin Y.,Pajak A.,Marsolais F.,McCourt P.,and Riggs C.D.,2013,Characterization of a cruciferin deficient mutant of Arabidopsis and its utility for overexpression of foreign proteins in plants,PLoS One,8(5):e64980
    Liu J.,Hua W.,Zhan G.M.,Wei F.,Wang X.F.,Liu G.H.,and Wang H.Z.,2010,Increasing seed mass and oil content in transgenic Arabidopsis by the overexpression of wri1-like gene from Brassica napus,Plant Physiol.Biochem.,48(1):9-15
    Lotan T.,Ohto M.,Yee K.M.,West M.A.,Lo R.,Kwong R.W.,Yamagishi K.,Fischer R.L.,Goldberg R.B.,and Harada J.J.,1998,Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells,Cell,93(7):1195-1205
    Mao T.,Jiang Z.,Han Y.,Teng W.,Zhao X.,and Li W.,2013,I-dentification of quantitative trait loci underlying seed protein and oil contents of soybean across multi-genetic backgrounds and environments,Plant Breeding,132(6):630-641
    McGlew K.,Shaw V.,Zhang M.,Kim R.J.,Yang W.,Shorrosh B.,Suh M.C.,and Ohlrogge J.,2015,An annotated database of Arabidopsis mutants of acyl lipid metabolism,Plant Cell Rep.,34(4):519-532
    Mu J.,Tan H.,Zheng Q.,Fu F.,Liang Y.,Zhang J.,Yang X.,Wang T.,Chong K.,Wang X.J.,and Zuo J.,2008,LEAFYCOTYLEDON1 is a key regulator of fatty acid biosynthesis in Arabidopsis,Plant Physiol.,148(2):1042-1054
    Napier J.A.,Stobart A.K.,and Shewry P.R.,1996,The structure and biogenesis of plant oil bodies:the role of the ER membrane and the oleosin class of proteins,Plant Mol.Biol.,31(5):945-956
    Napier J.A,Beaudoin F.,Tatham A.S.,Alexander L.G.,and Shewry P.R.,2001,The seed oleosins:structure,properties and biological role,Advances in Botanical Research,35:111-138
    Roesler K.,Shen B.,Bermudez E.,Li C.,Hunt J.,Damude H.G.,Ripp K.G.,Everard J.D.,Booth J.R.,Castaneda L.,Feng L.,and Meyer K.,2016,An improved variant of soybean type 1diacylglycerol acyltransferase increases the oil content and decreases the soluble carbohydrate content of soybeans,Plant Physiol.,171(2):878-893
    Shi L.,Katavic V.,Yu Y.,Kunst L.,and Haughn G.,2012,Arabidopsis glabra2 mutant seeds deficient in mucilage biosynthesis produce more oil,Plant J.,69(1):37-46
    Shimada T.L.,and Hara-Nishimura I.,2015,Leaf oil bodies are subcellular factories producing antifungal oxylipins,Curr.Opin.Plant Biol.,25:145-150
    Siloto R.M.P.,Findlay K.,Lopez-Villalobos A.,Yeung E.C.,Nykiforuk C.L.,and Moloney M.M.,2006,The accumulation of oleosins determines the size of seed oil bodies in Arabidopsis,Plant Cell,18(8):1961-1974
    Theodoulou F.L.,and Eastmond P.J.,2012,Seed storage oil catabolism:a story of give and take,Curr.Opin.Plant Biol.,15(3):322-328
    Tu W.F.,Duan Z.Z.,Zhang Z.Q.,He Z.Q.,and Yao W.,2016,Targeted genome editing technique via CRISPR/Cas9 system and it's application in crops,Jiyinzuxue Yu Yingyong Shengwuxue(Genomics and Applied Biology),35(6):1539-1545(涂万富,段真珍,张志麒,何正权,姚伟,2016,CRISPR/Cas系统介导的基因组定点编辑技术及其在农作物研究中的应用,基因组学与应用生物学,35(6):1539-1545)
    Tzen J.,Cao Y.,Laurent P.,Ratnayake C.,and Huang A.,1993,Lipids,proteins,and structure of seed oil bodies from diverse species,Plant Physiol.,101(1):267-276
    Van Erp H.,Kelly A.A.,Menard G.,and Eastmond P.J.,2014,Multigene engineering of triacylglycerol metabolism boosts seed oil content in Arabidopsis,Plant Physiol.,165(1):30-36
    Wang Y.,Ma X.,Zhang X.,He X.,Li H.,Cui D.,and Yin D.,2016,ITRAQ-based proteomic analysis of the metabolic mechanisms behind lipid accumulation and degradation during peanut seed development and postgermination,J.Proteome Res.,15(12):4277-4289
    Weselake R.J.,Shah S.,Tang M.,Quant P.A.,Snyder C.L.,Furukawa-Stoffer T.L.,Zhu W.M.,Taylor D.C.,Zou J.T.,Kumar A.,Hall L.,Laroche A.,Rakow G.,Raney P.,Moloney M.M.,and Harwood J.L.,2008,Metabolic control analysis is helpful for informed genetic manipulation of oilseed rape(Brassica napus)to increase seed oil content,J.Exp.Bot.,59(13):3543-3549
    Xia H.,Wang X.J.,Li M.J.,and Xiao H.,2010,Improving fatty acid composition and increasing triacylglycerol content in plants by gene engineering:a review,Shengwu Gongcheng Xuebao(Chinese Journal of Biotechnology),26(6):735-743(夏晗,王兴军,李孟军,肖寒,2010,利用基因工程改良植物脂肪酸和提高植物含油量的研究进展,生物工程学报,26(6):735-743)
    Zhou D.,Zhao J.Z.,Bai Y.,Zhang Q.,Jing W.,and Zhang W.H.,2012,Research advance in triacylglycerol synthesis,metabolism,and regulation in plants,Nanjing Nongye Daxue Xuebao(Journal of Nanjing Agricultural University),35(5):77-86(周丹,赵江哲,柏杨,张群,井文,章文华,2012,植物油脂合成代谢及调控的研究进展,南京农业大学学报,35(5):77-86)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700