用户名: 密码: 验证码:
考虑页岩纹层与裂缝网络的延长组页岩多尺度三维地质结构模型
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:MULTI-SCALE 3-D MODELING OF YANCHANG SHALE GEOLOGICAL STRUCUTRE CONSIDERING LAMINAS AND FRACTURE NETWORKS
  • 作者:李丽慧 ; 黄北秀 ; 李严严 ; 邵鹏 ; 高相波 ; 胡瑞林 ; 李晓
  • 英文作者:LI Lihui;HUANG Beixiu;LI Yanyan;SHAO Peng;GAO Xiangbo;HU Ruilin;LI Xiao;Key Laboratory of Shale Gas and Geoengineering,Institute of Geology and Geophysics,Chinese Academy of Sciences;Institutions of Earth Science,Chinese Academy of Sciences;College of Earth and Planetary Sciences,University of Chinese Academy of Sciences;College of Architecture and Civil Engineering,Beijing University of Technology;
  • 关键词:纹层 ; 裂缝网络 ; 多尺度 ; 地质结构模型 ; 延长组页岩
  • 英文关键词:Lamina;;Fracture network;;Multi-scale;;Geological structure model;;Yanchang shale
  • 中文刊名:GCDZ
  • 英文刊名:Journal of Engineering Geology
  • 机构:中国科学院地质与地球物理研究所中国科学院页岩气与地质工程重点实验室;中国科学院地球科学研究院;中国科学院大学地球与行星科学学院;北京工业大学建筑工程学院;
  • 出版日期:2019-02-15
  • 出版单位:工程地质学报
  • 年:2019
  • 期:v.27;No.129
  • 基金:中国科学院战略性先导科技专项(B类)(XDB10030101);; 国家自然科学基金项目(41641025)资助~~
  • 语种:中文;
  • 页:GCDZ201901008
  • 页数:11
  • CN:01
  • ISSN:11-3249/P
  • 分类号:72-82
摘要
现场调查表明,砂质纹层、凝灰质纹层和天然裂缝广泛地存在于陆相页岩储层中。本文对鄂尔多斯盆地页岩储层中的纹层和天然裂缝进行了多尺度研究,并构建了三维地质结构模型。首先,基于二维裂缝现场调查,利用蒙特卡罗模拟方法建立了研究区域的三维裂缝网络模型。然后通过多种观测手段获得由宏观尺度到微观尺度的纹层结构特征。对多尺度纹层厚度的统计分析表明,米级、分米级、厘米级、毫米级和10微米级等不同研究尺度下的纹层平均厚度分别为2. 26 m,2. 09 dm,1. 70 cm,1. 48 mm和11. 7μm,呈现出分形特征,分形维数为1. 06;不同研究尺度下的单层厚度均服从负指数分布规律,即各研究尺度下厚度越大的纹层,其层数越少,反之越薄的纹层其数量越多。最后,根据上述纹层平均厚度及概率分布函数特征,建立了页岩的多尺度纹层结构模型,并将其叠加在裂缝网络模型上,生成不同尺度下的页岩三维地质结构模型。模型输出的裂缝、纹层参数与研究区域的真实地质参数有着较好的对比验证。这项研究工作可为页岩气储层的水力压裂数值模拟和物理模型试验提供更可靠的地质模型。
        Outcrops and core observations show that sandy and tuff aceous laminas and natural fractures are well developed in the continental shale gas reservoir. This study reports the distribution of laminas and natural fracture networks at different scales and established the 3-D geological structure models,with data obtained from outcrops,wells and cores of Yanchang shale from southern Ordos Basin. Firstly,based on two-dimensional fracture field investigations,a 3-D joint network model of the study area was built using the Monte Carlo simulation method. Then the laminations were identified from macroscopic scales to microscopic scales with multiple probe techniques.Statistical analysis of multi-scale layer thickness suggested that the average thickness of layers at multiple scales showed a fractal feature,with average layer thickness of 2. 26 m,2. 09 dm,1. 70 cm,1. 48 mm and 11. 7 μm,corresponding to meter scale,decimeter scale,centimeter scale,millimeter scale and 10-micro meter scale respectively,and that the layer thickness at studied scales all followed with an exponential probability distribution.The fitting curves indicated that most of laminas at each scale were relatively thin. In other words,the thicker the layer,the less the number of layers contained in shale. Finally,the lamination models were constructed and superposed over the joint network model to generate 3-D geological structure models at various scales. The models were validated by reproducing fracture and lamina parameters,which were fairly close to those measurements of realistic geological bodies in the study area. The findings of this work could shed light on the characterization and modeling of geological structure for the numerical simulation and physical model test of hydraulic fracturing in shale gas reservoir.
引文
Brittenham M D.2013.Geologic analysis of the upper Jurassic Haynesville shale in East Texas and West Louisiana:discussion[J].AAPG Bulletin,97:525-528.
    Broadhead R F.1993.Petrography and reservoir geology of upper Devonian shales,northern Ohio[J].USGS Bulletin,1909:1-15.
    Cheng M,Luo X R,Lei Y H,et al.2015.The distribution,fractal characteristic and thickness estimation of silty lamina and beds in the Zhangjiatan Shale,Ordos Basin[J].Natural Gas Geoscience,26(5):845-854.
    Chen Y,Chen L.1998.Fractal Geometry[M].Beijing:Seismological Press.
    Curtis J B.2002.Fractured shale-gas systems[J].AAPG Bulletin,86(11):1921-1938.
    Favero V,Ferrari A,Laloui L.2016.On the hydro-mechanical behaviour of remoulded and natural Opalinus clay shale[J].Engineering Geology,208:128-135.
    Gong J,Rossen W R.2016.Shape factor for dual-permeability fractured reservoir simulation:effect of non-uniform flow in 2 D fracture network[J].Fuel,184:81-88.
    Guo H J,Jia W L,Peng P A,et al.2014.The composition and its impact on the methane sorption of lacustrine shales from the upper Triassic Yanchang formation,Ordos Basin,China[J].Marine&Petroleum Geology,57(2):509-520.
    Han X D,Chen J P,Wang Q,et al.2016.A 3 D fracture network model for the undisturbed rock mass at the Songta dam site based on small samples[J].Rock Mechanics and Rock Engineering,49(2):611-619.
    Hsu S C,Nelson P P.2002.Characterization of Eagle Ford Shale[J].Engineering Geology,67(1):169-183.
    Lan H X,Chen J H,Wu Y M.2018.Spatial characterization of micro-and nanoscale micro-cracks in gas shale before and after triaxial compression test[J].Journal of Engineering Geology,26(1):24-35.
    Lei Y H,Luo X L,Wang X Z,et al.2015.Characteristics of silty laminae in Zhangjiatan Shale of southeastern Ordos Basin,China:Implications for shale gas formation[J].AAPG Bulletin,99(4):661-687.
    Li L H,Huang B X,Li Y Y,et al.2018.Multi-scale modeling of shale laminas and fracture networks in the Yanchang formation,Southern Ordos Basin,China[J].Engineering Geology,243:231-240.
    Li L H,Huang B X,Tan Y F,et al.2017.Geometric heterogeneity of continental shale in the Yanchang formation,southern Ordos Basin,China[J].Scientific Reports,7(1):6006.
    Li Y Y,Wang Q,Chen J P,et al.2015.K-means algorithm based on particle swarm optimization for the identification of rock discontinuity sets[J].Rock Mechanics and Rock Engineering,48(1):375-385.
    Li Y Y,Shang Y J,Yang P.2018.Modeling fracture connectivity in naturally fractured reservoirs:a case study in the Yanchang formation,Ordos Basin,China[J].Fuel,211:789-796.
    Mahanta B,Tripathy A,Vishal V,et al.2017.Effects of strain rate on fracture toughness and energy release rate of gas shales[J].Engineering Geology,218:39-49.
    Martineau D F.2007.History of the Newark eastfield and the Barnett shale as a gas reservoir[J].AAPG Bulletin,91(4):399-403.
    Mendoza-Torres F,Díaz-Viera M A,Erdely A.2017.Bernstein copula modeling for 2 D discrete fracture network simulations[J].Journal of Petroleum Science&Engineering,156:710-720.
    Miskimins J L,Barree R D.2003.Modeling of Hydraulic Fracture Height Containment in Laminated Sand and Shale Sequences[C].SPEProduction and Operations Symposium.Society of Petroleum Engineers.
    Nejadi S,Trivedi J J,Leung J.2017.History matching and uncertainty quantification of discrete fracture network models in fractured reservoirs[J].Journal of Petroleum Science&Engineering,152:21-32.
    Qiu X W,Liu C Y,Li Y H,et al.2009.Distribution characteristics and geological significance of tuff interlayers in Yanchang formation of Ordos Basin[J].Acta Sedimentologica Sinica,27(6):1138-1146.
    Slatt R M,O'Brien N R.2011.Pore types in the Barnett and Woodford gas shales:contribution to understanding gas storage and migration pathways in fine-grained rocks[J].AAPG Bulletin,95(12):2017-2030.
    Wang G C,Carr T R.2012.Methodology of organic-rich shale lithofacies identification and prediction:A case study from Marcellus shale in the Appalachian Basin[J].Computers&Geosciences,49:151-163.
    Wang H J,Liu D A,Huang Z Q,et al.2017.Mechanical properties and brittleness evaluation of layered shale rock[J].Journal of Engineering Geology,25(6):1414-1423.
    Wang X Z,Zhang L X,Gao C.2016.The heterogeneity of shale gas reservoir in the Yanchang Formation,Xiasiwan area,Ordos Basin[J].Earth Science Frontiers,23(1):134-145.
    Warpinski N R,Teufel L W.1984.Influence of geologic discontinuities on hydraulic fracture propagation[J].Journal of Petroleum Technology,39:209-220.
    Wasantha P L P,Ranjith P G,Zhang Q B,et al.2015.Do joint geometrical properties influence the fracturing behaviour of jointed rock?An investigation through joint orientation[J].Geomechanics and Geophysics for Geo-Energy and Geo-Resources,1:3-14.
    Xu D,Hu R L,Gao W,et al.2015.Effects of laminated structure on hydraulic fracture propagation in shale[J].Petroleum Exploration and Development,42(4):573-579.
    Zhang L Y,Einstein H H.2000.Estimating the intensity of rock discontinuities[J].International Journal of Rock Mechanics&Mining Sciences,37(5):819-837.
    Zhao H J,Ma F S,Liu G,et al.2016.Influence of different scales of structural planes on propagation mechanism of hydraulic fracturing[J].Journal of Engineering Geology,24(5):992-1007.
    Zhao Z H,Li X,Wang Y,et al.2016.A Laboratory study of the effects of interbeds on hydraulic fracture propagation in shale formation[J].Energies,9(7):556.
    Zhu X M.2008.Sedimentary petrology[M].Beijing:Petroleum Industry Press.
    Zou C N,Yang Z,Cui J W,et al.2013.Formation mechanism,geological characteristics and development strategy of nonmarine shale oil in China[J].Petroleum Exploration&Development,40(1):14-26.
    Zou C N,Yang Z,Zhang G S,et al.2014.Conventional and unconventional petroleum“orderly accumulation”:concept and practical signifi cance[J].Petroleum Exploration&Development,41(1):14-30.
    Zou C N,Zhao Q,Dong D Z,et al.2017.Geological characteristics,main challenges and future prospect of shale gas[J].Natural Gas Geoscinence,28(12):1781-1796.
    陈颙,陈凌.1998.分形几何学[M].北京:地震出版社.
    程明,罗晓容,雷裕红,等.2015.鄂尔多斯盆地张家滩页岩粉砂质夹层/纹层分布、分形特征和估算方法研究[J].天然气地球科学,26(5):845-854.
    兰恒星,陈俊辉,伍宇明.2018.三轴压缩试验前后含气页岩微纳尺度裂隙空间分布特征研究[J].工程地质学报,26(1):24-35.
    邱欣卫,刘池洋,李元昊,等.2009.鄂尔多斯盆地延长组凝灰岩夹层展布特征及其地质意义[J].沉积学报,27(6):1138-1146.
    王洪建,刘大安,黄志全,等.2017.层状页岩岩石力学特性及其脆性评价[J].工程地质学报,25(6):1414-1423.
    王香增,张丽霞,高潮.2016.鄂尔多斯盆地下寺湾地区延长组页岩气储层非均质性特征[J].地学前缘,23(1):134-145.
    赵海军,马凤山,刘港,等.2016.不同尺度岩体结构面对页岩气储层水力压裂裂缝扩展的影响[J].工程地质学报,24(5):992-1007.
    朱筱敏.2008.沉积岩石学[M].北京:石油工业出版社.
    邹才能,杨智,崔景伟,等.2013.页岩油形成机制、地质特征及发展对策[J].石油勘探与开发,40(1):14-26.
    邹才能,杨智,张国生,等.2014.常规-非常规油气“有序聚集”理论认识及实践意义[J].石油勘探与开发,41(1):14-27.
    邹才能,赵群,董大忠,等.2017.页岩气基本特征、主要挑战与未来前景[J].天然气地球科学,28(12):1781-1796.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700