用户名: 密码: 验证码:
鱼骨粉对土壤Cd污染钝化修复效应及其理化性质的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Fish Bone Meal on Immobilization Remediation of Cadmium Contaminated Soil and Its Physiochemical Properties
  • 作者:纪艺凝 ; 徐应明 ; 王农 ; 孙约兵
  • 英文作者:JI Yining;XU Yingming;WANG Nong;SUN Yuebing;Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA, Tianjin Key Laboratory of Agro-Environment and Agro-product Safety, Agro-Environmental Protection Institute,MARA;College of Resources and Environment, Northeast Agricultural University;
  • 关键词:鱼骨粉 ; 镉污染 ; 钝化修复 ; 有机碳
  • 英文关键词:fish bone meal;;cadmium pollution;;immobilization remediation;;organic carbon
  • 中文刊名:TRQS
  • 英文刊名:Journal of Soil and Water Conservation
  • 机构:农业农村部环境保护科研监测所农业农村部产地环境污染防控重点实验室天津市农业环境与农产品安全重点实验室;东北农业大学资源与环境学院;
  • 出版日期:2019-06-14
  • 出版单位:水土保持学报
  • 年:2019
  • 期:v.33;No.162
  • 基金:国家重点研发计划项目(2018YFD080066);; 天津市自然科学基金重点项目(17JCZDJC34200)
  • 语种:中文;
  • 页:TRQS201903046
  • 页数:8
  • CN:03
  • ISSN:61-1362/TV
  • 分类号:314-321
摘要
通过1年静态培养试验,研究了鱼骨粉对碱性和酸性Cd污染土壤钝化修复效应、基本理化性质和酶活性的影响。结果表明:随着鱼骨粉施加量的增加,酸性和碱性土壤中pH、有机质和阳离子交换量增加,而含水率则较对照降低了2.90%~6.19%和0.10%~1.81%。土壤中TCLP(toxicity characteristic leaching procedure)提取态Cd含量随鱼骨粉投加量增加而降低,较对照最大分别降低49.7%和17.0%。施加鱼骨粉后,碱性土壤中过氧化氢酶活性显著升高(p<0.05),过氧化物酶则受到抑制,脲酶活性仅在≤1%鱼骨粉处理时有所促进,而在酸性土壤中,过氧化氢酶、过氧化物酶和脲酶活性最大分别可增加90.5%,65.4%,75.8%。施用鱼骨粉改变了土壤有机碳官能团的数量,其中酚类化合物、脂肪C、芳香C官能团含量均有所增加。土壤中有效态Cd与土壤有机质含量、过氧化氢酶活性呈极显著负相关关系(p<0.01),与土壤pH、阳离子交换量呈显著负相关关系(p<0.05)。研究表明利用鱼骨粉钝化修复Cd污染土壤较为有效可行。
        One-year static cultivation experiments were conducted to investigate the effects of fish bone meal on immobilization remediation of cadmium(Cd), basic physiochemical properties and enzyme activities in acid and alkaline Cd contaminated soils. The results showed that with the increasing of fish bone meal amount, the pH, organic matter and cation exchange capacity increased in acid and alkaline soils, while the water content decreased by 2.90% ~ 6.19% and 0.10% ~ 1.81% compared with the control. The extractable Cd content of the TCLP(toxicity characteristic leaching procedure) in soil decreased with the increasing of fish bone meal, which decreased by 49.7% and 17.0% at most, respectively, when compared with the control. After the addition of fish bone meal to alkaline soil, the activity of catalase increased significantly(p < 0.05), while the peroxidase activity was restrained, and the urease activity was promoted only under the treatment of addition fish bone meal less than 1%. However, in the acid soil, the activity of catalase, peroxidase and urease increase by 90.5%, 65.4% and 75.8% at most, respectively. The number of organic carbon functional groups was changed after applying fish bone meal, and the content of phenolic compounds, aliphatic C and aromatic C increased. The content of available Cd in soil was extremely negatively correlated with the organic matter content and the catalase activity(p < 0.01), and it was obviously negatively correlated with pH and cation exchange capacity(p < 0.05). Therefore, using fish bone meal was efficient for remediation of Cd contaminated soil.
引文
[1] Gupta U,Gupta S.Trace element toxicity relationships to crop production and livestock and human health:Implications for management [J].Communications in Soil Science and Plant Analysis,1998,29(11/14):1491-1522.
    [2] 韦朝阳,陈同斌.重金属超富集植物及植物修复技术研究进展[J].生态学报,2001,21(7):1196-1203.
    [3] 安红敏,郑伟,高扬.镉的健康危害及干预治疗研究进展[J].环境与健康杂志,2007,24(9):739-742.
    [4] 龚继明.重金属污染的缓与急[J].植物生理学报,2014,50(5):567-568.
    [5] 刘骏龙,欧阳光明,聂新星,等.磁性固体螯合材料对农田土壤中镉去除的影响因素[J].农业资源与环境学报,2015,35(1):11-16.
    [6] 陈远其,张煜,陈国梁.石灰对土壤重金属污染修复研究进展[J].生态环境学报,2016,25(8):1419-1424.
    [7] 孙约兵,徐应明,史新,等.污灌区镉污染土壤钝化修复及其生态效应研究[J].中国环境科学,2012,32(8):1467-1473.
    [8] Smiciklas I,Dimovi? I,Mitri? M.Removal of Co2+ from aqueous solutions by hydroxyapatite [J].Water Research,2006,40(12):2267-2274.
    [9] Guo G,Zhou Q,Ma L Q.Availability and assessment of fixing additives for the in situ remediation of heavy metal contaminated soils:A review [J].Environmental Monitoring and Assessment,2006,116(3):513-528.
    [10] Valipour M,Shahbazi K,Khanmirzaei A.Chemical immobilization of lead,cadmium,copper,and nickel in contaminated soils by phosphate amendments [J].CLEAN-Soil,Air,Water,2016,44(5):572-578.
    [11] Shahid M,Xiong T,Masood N,et al.Influence of plant species and phosphorus amendments on metal speciation and bioavailability in a smelter impacted soil:A case study of food-chain contamination [J].Journal of Soils & Sediments,2014,14(4):655-665.
    [12] Yang Z,Fang Z,Tsang P E,et al.In situ remediation and phytotoxicity assessment of lead-contaminated soil by biochar-supported Nhap [J].Journal of Environmental Management,2016,182:247-251.
    [13] Austruy A ,Shahid M ,Tiantian X,et al.Mechanisms of metal-phosphates formation in the rhizosphere soils of pea and tomato:Environmental and sanitary consequences [J].Journal of Soils & Sediments,2014,14(4):666-678.
    [14] 纪艺凝,王农,徐应明,等.无机-有机复配材料对Cd污染土壤的修复效应[J].环境化学,2017,36(11):2333-2340.
    [15] Kalbitz K,Wennrich R.Mobilization of heavy metals and arsenic in polluted wetland soils and its dependence on dissolved organic matter [J].Science of Total Environment,1998,209(1):27-39.
    [16] 林大松,徐应明,孙国红,等.土壤pH、有机质和含水氧化物对镉、铅竞争吸附的影响[J].农业环境科学学报,2007,26(2):510-515.
    [17] Lee Y C,Kim E J,Ko D A,et al.Water-soluble organo-building blocks of aminoclay as a soil-flushing agent for heavy metal contaminated soil [J].Journal of Hazardous Materials,2011,196(1):101-108.
    [18] 宋波,曾炜铨.土壤有机质对镉污染土壤修复的影响[J].土壤通报,2015,46(4):1018-1024.
    [19] Liu C C,Lin Y C.Reclamation of copper-contaminated soil using EDTA or citric acid coupled with dissolved organic matter solution extracted from distillery sludge [J].Environmental Pollution,2013,178(1):97-101.
    [20] 王永强,肖立中,李伯威,等.不同改良剂对复合污染重金属形态与再分配的影响[J].安徽农业科学,2009,37(34):17027-17029.
    [21] Coles C A,Yong R N.Aspects of kaolinite characterization and retention of Pb and Cd [J].Applied Clay Science,2002,22(1):39-45.
    [22] 杜彩艳,祖艳群,李元,等.pH和有机质对土壤中镉和锌生物有效性影响研究[J].云南农业大学学报(自然科学版),2005,20(4):539-543.
    [23] 廖敏,黄昌勇,谢正苗.pH对镉在土水系统中的迁移和形态的影响[J].环境科学学报,1999,19(1):81-86.
    [24] Yang Z F,Chen Y L,Xun Q,et al.A study of the effect of soil pH on chemical species of cadmium by simulated experiments [J].Earth Science Frontiers,2005,12:252-260.
    [25] Lucchini P,Quilliam R S,Deluca T H,et al.Increased bioavailability of metals in two contrasting agricultural soils treated with waste wood-derived biochar and ash [J].Environmental Science and Pollution Research,2014,21(5):3230-3240.
    [26] 林成谷.土壤学:北方本[M].北京:农业出版社,1983.
    [27] 赵安珍,张效年.磷酸盐吸附对可变电荷土壤正负电荷的影响[J].土壤学报,1997,34(2):123-129.
    [28] 郑顺安,郑向群,张铁亮,等.水分条件对紫色土中铅形态转化的影响[J].环境化学,2011,30(12):2080-2085.
    [29] 杜传宝.纳米羟基磷灰石固定污染土壤重金属的应用研究[D].南京:南京农业大学,2010.
    [30] Cao X,Ma L Q,Rhue D R,et al.Mechanisms of lead,copper,and zinc retention by phosphate rock [J].Environmental Pollution,2004,131(3):435-444.
    [31] Xu Y,Schwartz F W,Traina S J.Sorption of Zn2+ and Cd2+ on hydroxyapatite surfaces [J].Environmental Science and Technology,1994,28(8):1472-1480.
    [32] Ryan J A,Zhang P,Hesterberg D,et al.Formation of chloropyromorphite in a Lead-contaminated soil amended with hydroxyapatite [J].Environmental Science & Technology,2001,35(18):3798-3803.
    [33] Raicevic S,Kaludjerovicradoicic T,Zouboulis A I.In situ stabilization of toxic metals in polluted soils using phosphates:Theoretical prediction and experimental verification [J].Journal of Hazardous Materials,2005,117(1):41-53.
    [34] 许剑臣,李晔,肖华锋,等.改良剂对重金属复合污染土壤的修复效果[J].环境工程学报,2017,11(12):6511-6517.
    [35] 石小娟,刘玉清,易悦,等.3种含磷材料修复铜镉复合污染土壤的研究[J].湖南农业科学,2015(4):116-118.
    [36] 龙梅,胡锋,李辉信,等.低成本含磷材料修复环境重金属污染的研究进展[J].环境工程学报,2006,7(7):1-10.
    [37] Smucker A J M,Wang W,Kravchenko A N,et al.Forms and functions of meso and micro-niches of carbon within soil aggregates [J].Journal of Nematology,2010,42(1):84-86.
    [38] Solomon D,Lehmann J,Kinyangi J,et al.Carbon K-Edge NEXAFS and FTIR-ATR spectroscopic investigation of organic carbon speciation in soils [J].Soil Science Society of America Journal,2005,69(1):107-119.
    [39] 高菲.基于脂质特异性的不同动物源性饲料光谱鉴别方法与模型[D].北京:中国农业大学,2017.
    [40] 杨刚,李辉,程东波,等.基于傅里叶红外光谱的钢渣微粉修复重金属污染土壤效果软测量模型[J].光谱学与光谱分析,2017,37(3):743-748.
    [41] 赵世翔,于小玲,李忠徽,等.不同温度制备的生物质炭对土壤有机碳及其组分的影响:对土壤活性有机碳的影响[J].环境科学,2017,38(1):333-342.
    [42] 王新,周启星.土壤重金属污染生态过程、效应及修复[J].生态科学,2004,23(3):278-281.
    [43] 周礼恺,张志明,曹承绵,等.土壤的重金属污染与土壤酶活性[J].环境科学学报,1985,5(2):176-184.
    [44] 和文祥,朱铭莪.土壤酶与重金属关系的研究现状[J].生态环境学报,2000,9(2):139-142.
    [45] Gao Y,Wang Y F,Zhang G M,et al.An approach for assessing soil health:A practical guide for optimal ecological management [J].Environmental Earth Sciences,2012,65(1):153-159.
    [46] 王涵,王果,黄颖颖,等.pH变化对酸性土壤酶活性的影响[J].生态环境学报,2008,17(6):2401-2406.
    [47] 闫德仁.人工林土壤腐殖质特性和土壤酶活性的研究[J].林业科技,1997(5):10-12.
    [48] 关松荫.土壤酶及其研究法[M].北京:农业出版社,1986.
    [49] 刘文霞,郭华武,李博,等.铅与丁草胺的交互作用对油麦菜生长和抗氧化酶活性的影响[J].环境科学学报,2011,31(10):2282-2289.
    [50] 黄云凤,高扬,毛亮,等.Cd、Pb单一及复合污染下土壤酶生态抑制效应及生态修复基准研究[J].农业环境科学学报,2011,30(11):2258-2264.
    [51] 左清青,王烁康,赵陈晨,等.纳米羟基磷灰石对镉的吸附解吸及对镉污染土壤修复研究[J].环境工程,2017,35(3):179-183.
    [52] 郭荣荣,袁旭音,陈红燕,等.骨炭对复合污染土壤生物活性的修复及其时间效应[J].农业环境科学学报,2014,33(5):913-919.
    [53] Chojnacka K,Chojnacki A,Recka H G,et al.Bioavailability of heavy metals from polluted soils to plants [J].Science of the Total Environment,2005,337(1/3):175-182.
    [54] 丁炳红,俞巧钢,叶静,等.土壤重金属有效性影响因素及其防治对策[J].浙江农业科学,2012,1(5):729-732.
    [55] 刘广深,许中坚,周根娣,等.模拟酸雨作用下红壤镉释放的研究[J].中国环境科学,2004,24(4):419-423.
    [56] Bolan N S,Adriano D C,Mani P A,et al.Immobilization and phytoavailability of cadmium in variable charge soils.II.Effect of lime addition [J].Plant and Soil,2003,251(2):187-198.
    [57] 崔红标,田超,周静,等.纳米羟基磷灰石对重金属污染土壤Cu/Cd形态分布及土壤酶活性影响[J].农业环境科学学报,2011,30(5):874-880.
    [58] 查理思,吴克宁,鞠兵,等.黄褐土CEC影响因子分析[J].江西农业大学学报,2013,35(2):433-436.
    [59] 徐磊,蓝文翀,张娜,等.水分调控对材料钝化重金属效果的影响[J].中国农学通报,2017,33(35):88-93.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700