用户名: 密码: 验证码:
1980~2010年浙江某典型河流硝态氮通量对净人类活动氮输入的动态响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dynamic Response of Riverine Nitrate Flux to Net Anthropogenic Nitrogen Inputs in A Typical River in Zhejiang Province over the 1980-2010 Period
  • 作者:张柏发 ; 陈丁江
  • 英文作者:ZHANG Bai-fa;CHEN Ding-jiang;College of Environmental and Resource Sciences,Zhejiang University;Key Laboratory of Environment Remediation and Ecological Health,Ministry of Education,Zhejiang University;
  • 关键词:硝态氮 ; 净人类活动氮输入 ; 滞留氮库 ; 动态响应 ; 河流
  • 英文关键词:nitrate;;net anthropogenic nitrogen input(NANI);;retained nitrogen pools;;dynamic response;;river
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:浙江大学环境与资源学院;浙江大学污染环境修复与生态健康教育部重点实验室;
  • 出版日期:2014-07-16 10:26
  • 出版单位:环境科学
  • 年:2014
  • 期:v.35
  • 基金:国家自然科学基金项目(41371010,41001120);; 国家十二五科技支撑项目(2012BAC17B01);; 浙江省自然科学基金项目(LY13D010002)
  • 语种:中文;
  • 页:HJKZ201408012
  • 页数:9
  • CN:08
  • ISSN:11-1895/X
  • 分类号:71-79
摘要
以浙江某典型流域为研究对象,基于1980~2010年的水质水量和氮源数据及LOADEST模型,估算了逐年河流NO-3-N通量和净人类活动氮输入(NANI),分析了河流NO-3-N通量和NANI的年际演化特征及其动态响应关系,探讨了每年NANI、滞留氮库、自然背景源对河流NO-3-N通量的贡献.结果表明,1980~2010年,河流NO-3-N通量和NANI总体上都呈现出先增后减的抛物线型变化趋势,均在1998年左右分别达到峰值5.74 kg·(hm2·a)-1和77.5 kg·(hm2·a)-1;过去31 a,河流NO-3-N通量和NANI分别增加了~42%和~77%.化肥氮和大气氮沉降是NANI的主要来源,分别占了NANI的~48%和~40%.河流NO-3-N通量的年际变化不仅与NAIN(R2=0.27**)和化肥氮输入量(R2=0.32**)显著相关,而且与河流年均流量(R2=0.79**)或降雨量(R2=0.63**)具有更强的相关性,意味着河流NO-3-N的来源除了当年的NAIN,还受滞留氮库的影响.所建立的以NANI和流量为自变量的回归模型能很好地模拟河流NO-3-N通量变化(R2=0.94**).该模型预测结果显示,在NANI和流量分别降低30%的情况下,河流年均NO-3-N通量将分别减少~21%和~30%;每年的NANI、滞留氮库、自然背景源对河流当年NO-3-N通量的贡献率分别为~53%、~24%、~23%.河流NO-3-N通量长期的年际变化是NANI和水文要素共同作用的结果;但是,由于滞留氮库的影响,与源控制方式相比,增加"汇"景观应该能更加快速地削减河流NO-3-N通量.
        Based on long-term records of river water quality and discharge and nitrogen sources as well as the LOADEST model,annual riverine NO-3-N flux and net anthropogenic nitrogen input(NANI) were both estimated for a typical river catchment(2 474 km2) in Zhejiang Province over the 1980-2010 period. Historical trends in both riverine NO-3-N flux and NANI and their dynamic relationships were then fully addressed. Finally,the contributions of annual NANI,retained nitrogen pools,and natural background sources to riverine NO-3-N flux were indentified. Results indicated that both riverine NO-3-N flux and NANI showed parabolic changing trends with peak value of 5. 74 kg·(hm2·a)- 1for flux and 77. 5 kg·(hm2·a)- 1for NANI both occurring around 1998. In 1980-2010,net increase of riverine NO-3-N flux and NANI was ~ 42% and ~ 77%,respectively. Chemical nitrogen fertilizer application and atmospheric nitrogen deposition,which accounted for ~ 48% and ~ 40% of NANI,respectively,were the major sources of NANI. Although interannual change of riverine NO-3-N flux was significantly related to NANI(R2= 0. 27**) as well as the chemical nitrogen fertilizer application amount(R2= 0. 32**),it showed higher dependence on the river water discharge(R2= 0. 79**) or precipitation(R2= 0. 63**),implying that annual riverine NO-3-N was not only originated from current year's NANI,but also derived from retained N pools that were ultimately derived from NANI in previous years. A regression model developed by incorporating both NANI and water discharge could account for 94% of the variability of annual NO-3-N flux. This model predicted that NO-3-N flux could have been reduced by ~ 21% and~ 30% if the annual NANI and water discharge had been cut by 30%,respectively. Annual NANI,retained nitrogen pools,and natural background sources contributed to ~ 53%,~ 24%,and ~ 23% of the riverine NO-3-N flux,respectively,suggesting that ~ 77% of flux was derived from anthropogenic nitrogen sources. Although observed long-term interannual change of riverine NO-3-N flux was dependent on the combined influences of NANI and hydroclimate,a more immediate reduction of riverine NO-3-N flux may result from interception strategies than from cutting nitrogen source inputs due to the contribution of retained nitrogen pools.
引文
[1]陈小锋,揣小明,曾巾,等.太湖氮素出入湖通量与自能力研究[J].环境科学,2012,33(7):2309-2314.
    [2]段水旺,章申,陈喜保,等.长江下游氮、磷含量变化及其输送量的估计[J].环境科学,2000,21(1):53-56.
    [3]张汪寿,李叙勇,苏静君.河流氮输出对流域人类活动净氮输入的响应研究综述[J].应用生态学报,2014,25(1):272-278.
    [4]Howarth R W.Coastal nitrogen pollution:A review of sources and trends globally and regionally[J].Harmful Algae,2008,8(1):14-20.
    [5]Han H J,Allan J D,Scavia D.Influence of climate and human activities on the relationship between watershed nitrogen input and river export[J].Environmental Science&Technology,2009,43(6):1916-1922.
    [6]Howarth R,Swaney D,Billen G,et al.Nitrogen fluxes from the landscape are controlled by net anthropogenic nitrogen inputs and by climate[J].Frontiers in Ecology and the Environment,2012,10:37-43.
    [7]韩玉国,李叙勇,南哲,等.北京地区2003~2007年人类活动氮累积状况研究[J].环境科学,2011,32(6):1537-1545.
    [8]Han Y G,Fan Y T,Yang P L,et al.Net anthropogenic nitrogen inputs(NANI)index application in Mainland China[J].Geoderma,2014,213:87-94.
    [9]McIsaac G F,David M B,Gertner G Z,et al.Eutrophication:Nitrate flux in the Mississippi River[J].Nature,2001,414(6860):166-167.
    [10]Han Y G,Li X Y,Nan Z.Net anthropogenic nitrogen accumulation in the Beijing metropolitan region[J].Environmental Science and Pollution Research,2011,18(3):485-496.
    [11]Swaney D P,Hong B,Ti C P et al.Net anthropogenic nitrogen inputs to watersheds and riverine N export to coastal waters:a brief overview[J].Current Opinion in Environment,2012,4(2):203-211.
    [12]Grimvall A,Stalnacke P,Tonderski A.Time scales of nutrient losses from land to sea-a European perspective[J].Ecological Engineering,2000,14(4):363-371.
    [13]Stlnacke P,Grimvall A,Libiseller C,et al.Trends in nutrient concentrations in Latvian rivers and the response to the dramatic change in agriculture[J].Journal of Hydrology,2003,283(1-4):184-205.
    [14]De Wit M,Meinardi C,Wendland F,et al.Modelling water fluxes for the analysis of diffuse pollution at the river basin scale[J].Hydrological Processes,2003,14(10):1707-1723.
    [15]Howden N J K,Burt T P,Worrall F,et al.Nitrate concentrations and fluxes in the River Thames over 140 years(1868-2008):are increases irreversible?[J].Hydrological Processes,2010,24(18):2657-2662.
    [16]Van Breemen N,Boyer E W,Goodale C L,et al.Where did all the nitrogen go?Fate of nitrogen inputs to large watersheds in the northeastern USA[J].Biogeochemistry,2002,57-58(1):267-293.
    [17]李娜,盛虎,何成杰,等.基于统计模型LOADEST的宝象河污染物通量估算[J].应用基础与工程科学学报,2012,20(3):355-366.
    [18]孔玉生,王忠杰.新股上市首日定价预测模型研究[J].中国管理科学,2003,11(1):6-9.
    [19]Liu X J,Zhang Y,Han W X,et al.Enhanced nitrogen deposition over China[J].Nature,2013,294(7438):459-462.
    [20]Hong B G,Swaney D P,Howarth R W.Estimating net anthropogenic nitrogen inputs to US watersheds:Comparison of Methodologies[J].Environmental Science&Technology,2013,47(10):5199-5207.
    [21]王方浩,马文奇,窦争霞,等.中国畜禽粪便产生量估算及环境效应[J].中国环境科学,2006,26(5):614-617.
    [22]王光亚.中国食物成分表[M].北京:人民卫生出版社,2003.183.
    [23]Ti C P,Pan J J,Xia Y Q,et al.A nitrogen budget of mainland China with spatial and temporal variation[J].Biogeochemistry,2012,108(1-3):381-394.
    [24]Yan X Y,Cai Z C Yang R T,et al.Nitrogen budget and riverine nitrogen output in a rice paddy dominated agricultural watershed in eastern China[J].Biogeochemistry,2011,106(3):489-501.
    [25]陈丁江,孙嗣旸,贾颖娜,等.区域点源和非点源磷入河量计算的二元统计模型[J].环境科学,2013,34(1):84-89.
    [26]段水旺,章申.中国主要河流控制站氮、磷含量变化规律初探[J].地理科学,1999,19(5):411-416.
    [27]Meybeck M.Carbon,nitrogen,and phosphorus transport by world rivers[J].American Journal of Science,1982,282(4):401-450.
    [28]徐志伟,张心昱,孙晓敏,等.2004~2009年我国典型陆地生态系统地下水硝态氮评价[J].环境科学,2011,32(10):2827-2833.
    [29]Chen N W,Hong H S,Zhang L P,et al.Nitrogen sources and exports in an agricultural watershed in Southeast China[J].Biogeochemistry,2008,87(2):169-179.
    [30]Yan W J,Mayorga E,Li X Y,et al.Increasing anthropogenic nitrogen inputs and riverine DIN exports from the Changjiang River basin under changing human pressures[J].Global Biogeochemical Cycles,2010,24,GB0A06.
    [31]Iqbal M Z.Nitrate flux from aquifer storage in excess of baseflow contribution during a rain event[J].Water Research,2002,36(3):788-792.
    [32]Lindsey B D,Phillips S W,Donnelly C A,et al.Residence times and nitrate transport in ground water discharging to streams in the Chesapeake Bay watershed[R].Water-Resources Investigations Report 03-4035.U.S.Geological Survey,2003.
    [33]Kim G,Lee H,Lim Y,et al.Baseflow contribution to nitrates in an urban stream in Daejeon,Korea[J].Water Science and Technology,2010,61(12):3216-3220.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700