用户名: 密码: 验证码:
带整体式粒子分离器的涡轴发动机进口支板的三维积冰数值研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Simulation of Three-Dimensional Ice Accretion on Struts of Turbo-Shaft Engine with Inertial Particle Separator
  • 作者:张敏 ; 胡娅萍 ; 陈宁立 ; 曹广州 ; 苏长明 ; 吉洪湖
  • 英文作者:ZHANG Min;HU Ya-ping;CHEN Ning-li;CAO Guang-zhou;SU Chang-ming;JI Hong-hu;College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics;Research Institute of Unmanned Aircraft,Nanjing University of Aeronautics and Astronautics;
  • 关键词:整体式粒子分离器 ; 支板 ; 水收集系数 ; 积冰
  • 英文关键词:Inertial particle separator;;Struts;;Water collection efficiency;;Ice accretion
  • 中文刊名:TJJS
  • 英文刊名:Journal of Propulsion Technology
  • 机构:南京航空航天大学能源与动力学院;南京航空航天大学无人机研究院;
  • 出版日期:2019-01-23 15:52
  • 出版单位:推进技术
  • 年:2019
  • 期:v.40;No.264
  • 基金:国家自然科学基金(51506084);; 江苏省自然科学基金(BK20150740)
  • 语种:中文;
  • 页:TJJS201906010
  • 页数:11
  • CN:06
  • ISSN:11-1813/V
  • 分类号:80-90
摘要
整体式粒子分离器对涡轴发动机的气动乃至积冰都会有影响。为了获得涡轴发动机进口支板的积冰特性,以包含整体式粒子分离器的涡轴发动机进气机匣为模型,选取间断最大结冰条件,采用欧拉-欧拉法模拟了进气机匣内的空气-过冷水滴两相流场,并计算了支板表面的水滴撞击特性,再应用考虑水膜流动和蒸发的三维积冰模型对支板表面的积冰进行了模拟。计算结果表明,机匣进口的水滴有99.4%进入了扫气流道,而且结冰参数在支板前缘上游呈现出明显的周向不均匀性。对于主流道下游的4片支板,仅距离蜗壳起始位置最近的支板前缘局部受到显著的水滴撞击,最大水收集系数达到3.8,当积冰总时间为74s时,该支板表面最大积冰厚度约8mm,其余3片支板表面几乎没有水滴撞击和积冰现象。本文的研究结果可为考虑整体式粒子分离器影响的涡轴发动机进口支板的防冰设计提供依据。
        Inertial Particle Separator(IPS)plays an important role on aerodynamics and ice accretion of tur-bo-shaft engine. Ice accretion on struts of turbo-shaft engine with IPS was numerically simulated using a three-dimensional ice accretion model with water film flowing and evaporating,before which the two-phase flow of air-droplet and the impingement characteristics of droplets on struts were analyzed with the Euler-Euler method un-der the intermittent maximum icing conditions. The results indicate that 99.4% of the droplets from inlet flow intoscavenging channel and the icing parameters upstream the struts show obvious circumferential non-uniform distri-bution. Only one of the four struts,whose leading edge is nearest to beginning of volute,suffers from remarkabledroplet impingement with maximum water collection efficiency up to 3.8. The strut is covered with ice of whichthe maximum thickness was 8 mm when the total time of ice accretion was 74 s,while droplets impingement or iceaccretion hardly occurred on the other three struts. The research findings can provide guidance to icing protectiondesign on struts of turbo-shaft engine with IPS.
引文
[1]李洁琼,王锁芳,董伟林,等.整体式粒子分离器性能的试验研究[J].推进技术,2016,37(9):1617-1623.(LI Jie-qiong,WANG Suo-fang,DONG Wei-lin,et al.Experimental Study on Performance of Inertial Particle Separator[J]. Journal of Propulsion Technology,2016,37(9):1617-1623.)
    [2]裘夔纲,韩凤华.飞机防冰系统[M].北京:国防工业出版社,2004.
    [3] Kim J J. Particle Trajectory Computation on a 3-Dimensional Engine Inlet[R]. AIAA 85-0411.
    [4] Schuster E,Fisher M,Gambill J. Computational Icing Analysis for Aircraft Inlets[C]. Nashville:28th Joint Propulsion Conference and Exhibit,1992.
    [5] Papadakis M,Yeong H W,Wong S C,et al. Comparison of Experimental and Computational Ice Shapes for an Engine Inlet[R]. AIAA 2010-7671.
    [6] Li L,Hu H. An Experimental Study of Dynamic Ice Accretion Process on Aero-Engine Spinners[C]. Grapevine:55th AIAA Aerospace Sciences Meeting,2017.
    [7] Bidwel C,Pinella D,Garrison P. Ice Accretion Calculations for a Commercial Transport Using the LEWICE3D,ICEGRID3D and CMARC Programs[C]. Reno:37th Aerospace Sciences Conference,1999.
    [8] Bourgault Y,Boutanios Z,Habashi W G,et al. ThreeDimensional Eulerian Approach to Droplet Impingement Simulation Using FENSAP-ICE,Part 1:Model,Algorithm,and Validation[J]. Journal of Aircraft,2000,37(1):95-103.
    [9] Alkhalil K,Hitzigrath R,Philippi O,et al. Icing Analysis and Test of a Business Jet Engine Inlet Duct[C]. Reno:38th Aerospace Sciences Meeting and Exhibit,2000.
    [10] Silva D M D,Bachchan N,Kim I,et al. Icing Collection Efficiency Prediction Using an Eulerian-Eulerian Approach[C]. Atlanta:44th AIAA Fluid Dynamics Conference,2014.
    [11] Papadakis M,Yeong H W,Wong S C,et al. Comparison of Experimental and Computational Ice Shapes for an Engine Inlet[C]. Toronto:AIAA Atmos-Pheric and Space Environments Conference,2010.
    [12] Sang Lee,Eric Loth. Simulation of Icing on a Cascade of Stator Blades[J]. Journal of Propulsion and Power,2008,24(6).
    [13] Stiefel W. Environmental Icing Test of T800 Helicopter Engine with Integral Inlet Particle Separator[C]. Monterey:25th Joint Propulsion Conference,1989.
    [14]常士楠,苏新明,邱义芬.三维机翼结冰模拟[J].航空学报,2011,32(2):212-222.
    [15]杨胜华,林贵平.机翼结冰过程的数值模拟[J].航空动力学报,2011,26(2):323-330.
    [16]孙志国,朱春玲.三维机翼表面水滴撞击特性计算[J].计算物理,2011,28(5):677-685.
    [17]易贤,桂业伟,朱国林,等.运输机翼型结冰的计算和实验[J].航空动力学报,2011,26(4):808-813.
    [18]赵秋月.航空发动机进口支板及整流帽罩水滴撞击特性的计算分析[D].上海:上海交通大学,2011.
    [19]吕亚国,刘振侠,张丽芬,等.尾部可调的发动机进口支板结冰数值模拟研究[J].航空计算技术,2011,41(6):58-61.
    [20]董威,朱剑鋆,周志翔,等.航空发动机支板热滑油防冰性能试验[J].航空学报,2014,35(7):1845-1853.
    [21] Dong W,Zhu J,Lei G,et al. Numerical Simulation of Hot Air Anti-Icing Charateristics of an Aero-Engine Strut[C]. Kissimmee:53rd AIAA Aerospace Sciences Meeting,2015:77-105.
    [22] Dong W,Zhu J,Zhao Q. Numerical Simulation Analysis of a Guide Vane Hot Air Anti-Icing System[C]. Honolulu:42nd AIAA Thermophysics Conference,2011.
    [23] Dong W,Zhu J,Zheng M. Thermal Analysis and Testing of a Cone with Leading Edge Hot Air Anti-Icing System[C]. Maryland:52nd Aerospace Sciences Meeting,2014:565-570.
    [24] Dong W,Zheng M,Zhu J,et al. Experimental Investigation on Anti-Icing Performance of an Engine Inlet Strut[J]. Journal of Propulsion and Power,2016,33(2).
    [25]申晓斌,林贵平,杨胜华.三维发动机进气道水滴撞击特性分析[J].北京航空航天大学学报,2011,37(1):1-5.
    [26] Shen X B,Lin G,Yu J,et al. Three-Dimensional Numerical Simulation of Ice Accretion at the Engine Inlet[J]. Journal of Aircraft,2013,50(2):635-642.
    [27]胡娅萍,庞黎刚,吉洪湖,等. S型进气道沿程结冰参数变化的数值模拟[J].航空动力学报,2014,29(1):23-30.
    [28]屈靖国,吉洪湖,胡娅萍,等.蛇形进气道影响下发动机进口部件水撞击特性的数值研究[J].推进技术,2016,37(12):2251-2260.(QU Jing-guo,JI Honghu,HU Ya-ping,et al. Numerical Study on Water Droplets Impingement on Aero-Engine Entry Components with a Serpentine Inlet[J]. Journal of Propulsion Technology,2016,37(12):2251-2260.)
    [29] Norde E,Weide E T A V D,Hoeijmakers H W M. Eulerian Method for Ice Crystal Icing[J]. AIAA Journal,2017,56(1):1-13.
    [30]苏长明,胡娅萍,曹广州,等.考虑水膜蒸发的三维明冰积冰数值研究[J].推进技术,2018,39(7):1540-1548.(SU Chang-ming,HU Ya-ping,CAO Guangzhou,et al. Numerical Investigation on Glaze Ice Accretion with Evaporation of Water Film[J]. Journal of Propulsion Technology,2018,39(7):1540-1548.)
    [31]曹广州.迎风表面三维积冰的数学模型与计算方法研究[D].南京:南京航空航天大学,2011.
    [32] Silveira R A d,Maliska C R,Estivam D A.Evaluation of Collection Efficiency Methods for Icing Analysis[R].COBEM-2003-1810.
    [33]曾平君,孙姝,黄河峡,等.直升机/粒子分离器一体化流场特性:第一部分前进比的影响[J].航空动力学报,2014,29(4):858-866.
    [34]林贵平,卜雪琴,申晓斌.飞机结冰与防冰技术[M].北京:北京航空航天大学出版社,2016.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700