用户名: 密码: 验证码:
换热器强化传热技术
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Heat transfer enhancement technology for heat exchangers
  • 作者:刘思宇
  • 英文作者:Liu Siyu;Liaoning Nuclear Power Limited Company of China;
  • 关键词:换热器 ; 管型 ; 支撑结构 ; 节能 ; 结构优化
  • 英文关键词:heat exchanger;;tube type;;support structure;;energy conservation;;structure optimization
  • 中文刊名:HHGZ
  • 英文刊名:Coal and Chemical Industry
  • 机构:中核辽宁核电有限公司;
  • 出版日期:2019-03-26
  • 出版单位:煤炭与化工
  • 年:2019
  • 期:v.42;No.275
  • 语种:中文;
  • 页:HHGZ201903039
  • 页数:3
  • CN:03
  • ISSN:13-1416/TD
  • 分类号:150-152
摘要
换热器数量占总设备的40%左右,在化工生产中起着重要作用,提高其传热效率,进而实现能源的高效利用,具有现实意义。阐述换热器管程与壳程的强化传热技术,从管程的管型变化与壳程的支撑结构2个方面进行改进,通过增加管壳程冷热流质的湍流程度使其换热更加充分,以实现单位传热面积上热效率的最大化,进而促进能源利用率与经济效益的提高,达到高效节能的效果,为换热设备管壳程结构进一步优化提供新思路和新技术。
        The number of heat exchangers accounts for about 40% of the total equipment, it plays an important role in chemical production, it is of practical significance to improve the heat transfer efficiency and realize the efficient utilization of energy resources. Heat transfer enhancement technology of tube side and shell side of heat exchangers are expounded, it is improved from two aspects of tube type change and shell side support structure, by increasing the turbulence level of the cold and hot fluid in the shell and tube makes the heat transfer more sufficient, in order to maximize the thermal efficiency per unit heat transfer area, and promote the improvement of energy utilization and economic efficiency, to achieve the effect of high efficiency and energy saving, New ideas and new technologies are provided for further optimization of shell-and-tube side structure of heat exchange equipment.
引文
[1]张猛.沸腾传热高效管壳式换热器设计研究[D].上海:华东理工大学,2012.
    [2]毛希澜.换热器设计[M].上海:上海科学技术出版社,2009:25-30.
    [3]刘月芹.浅谈换热器的分类和特点[J].化工设计通讯,2003,29(3):39-42.
    [4] Shah R K, Sekulic D P. Fundamentals of heat exchanger design[M]. Hobok-en:John Wilkey&Sons,2003,200:11-85.
    [5]赵珍强,王婷.场协同理论与换热器强化传热技术[J].能源与环境,2008(6):28-29.
    [6]董科利,马晓建,鲁锋.强化传热技术及一些典型的应用[J].轻工科技,2007,23(6):19-20.
    [7]刘巍,邓方义.冷换设备工艺计算手册[M].北京:中国石化出版社,2008:9-23.
    [8]刘舜尧,管文华.管壳式换热器纽带强化传热实验研究[J].广东化工,2009,36(10):175-177.
    [9]李占锋,杨学忠.螺旋槽管管内湍流流动与换热的三维数值模拟[J].低温与超导,2008,36(11):56-60.
    [10]陈惠民.纵横交错管传热及流阻性能研究[J].石油化工设备,2012,41(2):41-45.
    [11] Jae-Hong Park,Young-Soo Kim. Evaporation Heat Transfer and Pressure Drop Characteristics of R-134a in the Oblong Shell and Plate Heat Exchanger[J]. KSME International Journal, 2004, 18(12):2 284-2 293.
    [12]喻九阳,徐建民,郑小涛.列管式换热器强化传热技术[M].化学工业出版社,2013:30-32.
    [13]来慧.百叶折流板换热器壳测流动与传热性能研究[D].太原:太原理工大学,2015.
    [14]张宇.国内外螺旋折流板换热器技术创新综述[J].石油和化工设备,2015(10):94-96.
    [15]杜文静,王红福,程林.螺旋折流板换热器壳程流动特性[J].化工学报,2014(8).
    [16]邓斌,吴扬,陶文铨.螺旋折流板换热器壳侧流动的数值模拟[J].西安交通大学学报,2004,38(11):1 106-1 109.
    [17]周吉成,朱冬生,唐新宜.扭曲管换热器壳程流体流动及传热的数值模拟[J].化学工程2011,39(5):59-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700