用户名: 密码: 验证码:
适用于甲烷干重整反应的镍基催化剂
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Ni-based catalysts used for dry reforming of methane
  • 作者:陈楠 ; 岑洁 ; 姚楠
  • 英文作者:Chen Nan;Cen Jie;Yao Nan;College of Chemical Engineering,State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology,Zhejiang University of Technology;
  • 关键词:Ni基催化剂 ; 甲烷干重整 ; 反应机理 ; 积碳 ; 烧结团聚 ; 催化剂优化
  • 英文关键词:Ni-based catalysts;;dry reforming of methane;;reaction mechanism;;carbon deposition;;sintering agglomerating;;catalyst optimization
  • 中文刊名:SYHG
  • 英文刊名:Petrochemical Technology
  • 机构:浙江工业大学化学工程学院绿色化学合成技术国家重点实验室培育基地;
  • 出版日期:2019-06-15
  • 出版单位:石油化工
  • 年:2019
  • 期:v.48
  • 基金:浙江省自然科学基金项目(LR13B030002)
  • 语种:中文;
  • 页:SYHG201906014
  • 页数:6
  • CN:06
  • ISSN:11-2361/TQ
  • 分类号:80-85
摘要
Ni基催化剂常用于甲烷干重整(DRM)反应,但是在反应过程中易因积碳和烧结而失活,影响催化剂的性能。在DRM反应机理、反应温度与积碳的关系、Ni基催化剂烧结团聚、优化Ni基催化剂的制备方法等方面综述了适用于DRM反应的Ni基催化剂的研究进展,以期为设计具有更佳抗积碳和抗烧结性能的Ni基催化剂提供理论和研究依据。
        The Ni-based catalyst is widely applied in the dry reforming of methane(DRM) reaction,however,it often deactivates during the reaction owing to the sintering and carbon deposition,affecting the performance of catalyst. This paper summarizes the recent progress of Ni-based catalysts for DRM reaction in the aspects of DRM reaction mechanism,the relation between the reaction temperature and carbon deposition,sintering agglomerating as well as how to optimize preparation of Ni-based catalyst. Such information will be helpful to design the Ni-based catalyst with better anti-sintering and anti-carbon deposition properties as theory and research basis.
引文
[1]QuéréC L,Andrew R M,Friedlingstein P,et al.Global carbon budget 2017[J].Earth System Sci Data Discuss,2018,10:405-448.
    [2]Gao Hanyang,Zhu Kunxu,Hu Guoxin,et al.Large-scale graphene production by ultrasound-assisted exfoliation of natural graphite in supercritical CO2/H2O medium[J].Chem Eng J,2017,308:872-879.
    [3]Wang Fangxiao,Liang Lin,Shi Lei,et al.CO2 mediated approach to fabricate the visible-light-responsive mesoporous structured carbon/bismuth oxide composites[J].Appl Catal,A,2016,521:104-110.
    [4]Dopazo J A,Fernández-Seara J.Experimental evaluation of freezing processes in horizontal plate freezers using CO2 as refrigerant[J].Int J Refriger,2012,35(8):2093-2101.
    [5]Francke R,Schille B,Roemelt M.Homogeneously catalyzed electroreduction of carbon dioxide-methods,mechanisms,and catalysts[J].Chem Rev,2018,118(9):4631-4701.
    [6]Zhou Chenguang,Zhou Juankang,Lu Lei,et al.Surface electric field driven directional charge separation on Ta3N5cuboids enhancing photocatalytic solar energy conversion[J].Appl Catal,B,2018,237:742-752.
    [7]Wang Sibo,Guan Yuanbu,Lou Xiongwen.Rationally designed hierarchical N-doped carbon@NiCo2O4 double-shelled nanoboxes for enhanced visible light CO2 reduction[J].Energy Environ Sci,2018,11(2):306-310.
    [8]Artz J,Müller T E,Thenert K,et al.Sustainable conversion of carbon dioxide:An integrated review of catalysis and life cycle assessment[J].Chem Rev,2018,118(2):434-504.
    [9]Chen Jingxian,Jin Bi,Dai Weili,et al.Catalytic fixation of CO2 to cyclic carbonates over biopolymer chitosan-grafted quarternary phosphonium ionic liquid as a recylable catalyst[J].Appl Catal,A,2014,484(10):26-32.
    [10]Yang Zhenzhen,Zhang Hongye,Yu Bo,et al.A Tr?ger’s base-derived microporous organic polymer:Design and applications in CO2/H2 capture and hydrogenation of CO2 to formic acid[J].Chem Commun,2015,51(7):1271-1274.
    [11]Ganesh I.Conversion of carbon dioxide into methanolA potential liquid fuel:Fundamental challenges and opportunities(A review)[J].Renew Sust Energy Rev,2014,31(2):221-257.
    [12]Akbari E,Alavi S M,Rezaei M.Synthesis gas production over highly active and stable nanostructured Ni-MgO-Al2O3catalysts in dry reforming of methane:Effects of Ni contents[J].Fuel,2017,194:171-179.
    [13]Akri M,Pronier S,Chafik T,et al.Development of nickel supported La and Ce-natural illite clay for autothermal dry reforming of methane:Toward a better resistance to deactivation[J].Appl Catal,B,2017,205:519-531.
    [14]Song Qingwen,Zhou Zhihua,He Liangnian.Efficient selective and sustainable catalysis of carbon dioxide[J].Green Chem,2017,19(16):3707-3728.
    [15]Nair M M,Kaliaguine S.Structured catalysts for dry reforming of methane[J].New J Chem,2016,40(5):4049-4060.
    [16]Adesina A A.The role of CO2,in hydrocarbon reforming catalysis:Friend or foe?[J].Curr Opin Chem Eng,2012,1(3):272-280.
    [17]Arora S,Prasad R.An overview on dry reforming of methane:Strategies to reduce carbonaceous deactivation of catalysts[J].RSC Adv,2016,6(110):108668.
    [18]Pakhare D,Spivey J.A review of dry(CO2)reforming of methane over noble metal catalysts[J].Chem Soc Rev,2014,43(22):7813-7837.
    [19]Abdullah B,Ghani N A A,Vo D V N.Recent advances in dry reforming of methane over Ni-based catalysts[J].J Clean Product,2017,162:170-185.
    [20]卢君颖,郭禹,刘其瑞,等.甲烷二氧化碳重整制合成气钴基催化剂[J].化学进展,2017,29(12):1471-1479.
    [21]Foppa L,Margossian T,Kim S M,et al.Contrasting the role of Ni/Al2O3 interfaces in water-gas shift and dry reforming of methane[J].J Am Chem Soc,2017,139(47):17128-17139.
    [22]Kathiraser Y,Oemar U,Saw E T,et al.Kinetic and mechanistic aspects for CO2,reforming of methane over Ni based catalysts[J].Chem Eng J,2015,278:62-78.
    [23]Aldana P A U,Ocampo F,Kobl K,et al.Catalytic CO2valorization into CH4 on Ni-based ceria-zirconia.Reaction mechanism by Operando IR spectroscopy[J].Catal Today,2013,215(1):201-207.
    [24]Das S,Sengupta M,Patel J,et al.A study of the synergy between support surface properties and catalyst deactivation for CO2 reforming over supported Ni nanoparticles[J].Appl Catal,A,2017,545:113-126.
    [25]Li Kai,He Feng,Yu Hongmei,et al.Theoretical study on the reaction mechanism of carbon dioxide reforming of methane on La and La2O3 modified Ni(111)surface[J].J Catal,2018,364:248-261.
    [26]Das S,Sengupta M,Bag A,et al.Facile synthesis of highly disperse Ni-Co nanoparticles over mesoporous silica for enhanced methane dry reforming[J].Nanoscale,2018,10(14):6409-6425.
    [27]Chung Weichieh,Chang Moobeen.Review of catalysis and plasma performance on dry reforming of CH4,and possible synergistic effects[J].Renew Sust Energy Rev,2016,62:13-31.
    [28]姜洪涛,华炜,计建炳.甲烷重整制合成气镍催化剂积炭研究[J].化学进展,2013,25(5):859-868.
    [29]Vasiliades M A,Djinovi?P,Davlyatova L F,et al.Origin and reactivity of active and inactive carbon formed during DRM over Ni/Ce0.38Zr0.62O2-δstudied by transient isotopic techniques[J].Catal Today,2018,299:201-211.
    [30]Han J W,Kim C,Park J S,et al.Highly coke-resistant Ni nanoparticle catalysts with minimal sintering in dry reforming of methane[J].ChemSusChem,2014,7(2):451-456.
    [31]Figueredo G P,Medeiros R L,Macedo H P,et al.Acomparative study of dry reforming of methane over nickel catalysts supported on perovskite-type LaAlO3 and commercialα-Al2O3[J].Int J Hydrogen Energy,2018,43:11022-11037.
    [32]Chen Qingjun,Zhang Jun,Pan Bingrong,et al.Temperature-dependent anti-coking behaviors of highly stable Ni-CaO-ZrO2 nanocomposite catalysts for CO2 reforming of methane[J].Chem Eng J,2017,320:63-73.
    [33]Zhao Yu,Kang Yunqing,Li Hui,et al.CO2 conversion to synthesis gas via DRM on the durable Al2O3/Ni/Al2O3 sandwich catalyst with high activity and stability[J].Green Chem,2018,20:2781-2787.
    [34]Debek R,Motak M,Grzybek T,et al.A short review on the catalytic activity of hydrotalcite-derived materials for dry reforming of methane[J].Catalysts,2017,121(7):185-208.
    [35]Chen Pin,Hou Zhaoyin,Zheng Xiaoming,et al.Carbon deposition on meso-porous Al2O3 supported Ni catalysts in methane reforming with CO2[J].React Kinet Catal Lett,2005,86:51-58.
    [36]Bengaard H S,N?rskov J K,Sehested J,et al.Steam reforming and graphite formation on Ni catalysts[J].J Catal,2002,209(2):365-384.
    [37]Zhang Xiaoping,Zhang Qingde,Tsubaki N,et al.Carbon dioxide reforming of methane over Ni nanoparticles incorporated into mesoporous amorphous ZrO2 matrix[J].Fuel,2015,147:243-252.
    [38]Han J W,Park J S,Min S C,et al.Uncoupling the size and support effects of Ni catalysts for dry reforming of methane[J].Appl Catal,B,2017,203:625-632.
    [39]Stroud T,Smith T,SachéE L,et al.Chemical CO2 recycling via dry and Bi reforming of methane using Ni-Sn/Al2O3 and Ni-Sn/CeO2-Al2O3 catalysts[J].Appl Catal,B,2017,224:125-135.
    [40]Djinovi?P,Pintar A.Stable and selective syngas production from dry CH4-CO2 streams over supported bimetallic transition metal catalysts[J].Appl Catal,B,2017,206:675-682.
    [41]Lovell E,Jiang Y J,Scott J,et al.CO2 reforming of methane over MCM-41-supported nickel catalysts:Altering support acidity by one-pot synthesis at room temperature[J].Appl Catal,A,2014,473(5):51-58.
    [42]Das S,Thakur S,Bag A,et al.Support interaction of Ni nanocluster based catalysts applied in CO2 reforming[J].JCatal,2015,330:46-60.
    [43]Hadian N,Rezaei M,Mosayebi Z,et al.CO2 reforming of methane over nickel catalysts supported on nanocrystalline MgAl2O4 with high surface area[J].J Nat Gas Chem,2012,21(2):200-206.
    [44]Alvar E N,Rezaei M.Mesoporous nanocrystalline MgAl2O4spinel and its applications as support for Ni catalyst in dry reforming[J].Scripta Mater,2009,61(2):212-215.
    [45]Guo Jianjun,Lou Hui,Zhao Hong,et al.Novel synthesis of high surface area MgAl2O4 spinel as catalyst support[J].Mater Lett,2004,58(12):1920-1923.
    [46]Li Ziwei,Kawi S.Multi-Ni@Ni phyllosilicate hollow sphere for CO2 reforming of CH4:Influence of Ni precursors on structure,sintering,and carbon resistance[J].Catal Sci Technol,2018,8(7):1915-1922.
    [47]Huang Qiong,Fang Xiuzhong,Cheng Qinzhen,et al.Synthesis of a highly active and stable nickel-embedded alumina catalyst for methane dry reforming:On the confinement effects of alumina shells for nickel nanoparticles[J].ChemCatChem,2017,9:3563-3571.
    [48]Zhang Junshe,Li Fanxing.Coke-resistant Ni@SiO2 catalyst for dry reforming of methane[J].Appl Catal,B,2015,176/177:513-521.
    [49]Bian Zhoufeng,Suryawinata I Y,Kawi S.Highly carbon resistant multicore-shell catalyst derived from Ni-Mg phyllosilicate nanotubes@silica for dry reforming of methane[J].Appl Catal,B,2016,195:1-8.
    [50]Zhao Yu,Li Hui,Li Hexing.NiCo@SiO2 core-shell catalyst with high activity and long lifetime for CO2 conversion through DRM reaction[J].Nano Energy,2018,45:101-108.
    [51]Son I H,Lee S J,Soon A,et al.Steam treatment on Ni/γ-Al2O3 for enhanced carbon resistance in combined steam and carbon dioxide reforming of methane[J].Appl Catal,B,2013,134/135:103-109.
    [52]Charisiou N D,Siakavelas G,Papageridis K N,et al.Syngas production via the biogas dry reforming reaction over nickel supported on modified with CeO2 and/or La2O3 alumina catalysts[J].J Nat Gas Sci Eng,2016,31:164-183.
    [53]Damyanova S,Pawelec B,Palcheva R,et al.Structure and surface properties of ceria-modified Ni-based catalysts for hydrogen production[J].Appl Catal,B,2018,225:340-353.
    [54]Debek R,Galvez M E,Launay F,et al.Low temperature dry methane reforming over Ce,Zr and CeZr promoted NiMg-Al hydrotalcite-derived catalysts[J].Int J Hydrogen Energy,2016,41(27):11616-11623.
    [55]Debek R,Radlik M,Motak M,et al.Ni-containing Ce-promoted hydrotalcite derived materials as catalysts for methane reforming with carbon dioxide at low temperatureOn the effect of basicity[J].Catal Today,2015,257:59-65.
    [56]Wang Ye,Yao Lu,Wang Shenghong,et al.Low-temperature catalytic CO2 dry reforming of methane on Ni-based catalysts:A review[J].Fuel Process Technol,2018,169:199-206.
    [57]Juan-Juan J,Román-Martínez M C,Illán-Gómez M J.Effect of potassium content in the activity of K-promoted Ni/Al2O3catalysts for the dry reforming of methane[J].Appl Catal,A,2006,301(1):9-15.
    [58]Frusteri F,Spadaro L,Arena F,et al.TEM evidence for factors affecting the genesis of carbon species on bare and K-promoted Ni/MgO catalysts during the dry reforming of methane[J].Carbon,2002,40(7):1063-1070.
    [59]Luisetto I,Sarno C,Felicis D D,et al.Ni supported onγ-Al2O3 promoted by Ru for the dry reforming of methane in packed and monolithic reactors[J].Fuel Process Technol,2017,158(6):130-140.
    [60]Teherian Z,Yousefpour M,Tajally M,et al.Promotional effect of samarium on the activity and stability of Ni-SBA-15catalysts in dry reforming of methane[J].Microporous Mesoporous Mater,2017,251:9-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700