用户名: 密码: 验证码:
飞秒激光诱导0.3~2.0μm气溶胶的生成
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Femtosecond Laser-Induced 0.3-2.0 μm Aerosol Formation
  • 作者:胡兴凯 ; 鞠晶晶 ; 李儒新 ; 孙海轶 ; 刘永宏 ; 王成 ; 邓兆泽 ; 冉靓 ; 刘建胜 ; 陈瑞良 ; 徐至展
  • 英文作者:Hu Xingkai;Ju Jingjing;Li Ruxin;Sun Haiyi;Liu Yonghong;Wang Cheng;Deng Zhaoze;Ran Liang;Liu Jiansheng;Chin See Leang;Xu Zhizhan;State Key Laboratory of High Field Laser Physics,Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences;University of Chinese Academy of Sciences;Key Laboratory for Middle Atmosphere and Global Environment Observation(LAGEO),Institute of Atmospheric Physics,Chinese Academy of Sciences;Inertial Fusion Sciences and Applications(IFSA) Collaborative Innovation Center,Shanghai Jiao Tong University;Department of Physics,Shanghai Normal University;Center for Optics,Photonics and Laser(COPL),Laval University;
  • 关键词:超快光学 ; 非线性光学 ; 飞秒光丝 ; 气溶胶 ; 光化学反应
  • 英文关键词:ultrafast optics;;nonlinear optics;;femtosecond filament;;aerosol;;photochemical reaction
  • 中文刊名:JJZZ
  • 英文刊名:Chinese Journal of Lasers
  • 机构:中国科学院上海光学精密机械研究所强场激光物理国家重点实验室;中国科学院大学;中国科学院大气物理研究所中层大气和全球环境探测重点开放实验室;上海交通大学聚变科学与应用协同创新中心;上海师范大学物理系;拉瓦尔大学光学光子学和激光研究中心;
  • 出版日期:2018-11-23 10:16
  • 出版单位:中国激光
  • 年:2019
  • 期:v.46;No.507
  • 基金:国家重点基础研究发展计划(2011CB808100);; 国家自然科学基金(11425418,61475167);; 中国科学院战略性科技先导专项(B类)(XDB160104)
  • 语种:中文;
  • 页:JJZZ201903030
  • 页数:10
  • CN:03
  • ISSN:31-1339/TN
  • 分类号:234-243
摘要
在室温条件下的小型云室中,研究了不同参数对飞秒激光诱导较大尺寸气溶胶生成的影响。实验结果表明,在亚饱和条件下,随着环境相对湿度的提高,不同尺寸气溶胶的数密度增大,尺寸分布以0.3~0.5μm为主;当环境相对湿度达到近饱和条件时,较大尺寸(直径D≥0.7μm)气溶胶的数密度显著增大,1.0~2.0μm气溶胶与0.3~0.5μm气溶胶的数密度可相比拟。此时,通过延长激光照射时间或者缩紧激光聚焦条件,不同尺寸气溶胶的数密度可同等程度地增大,尺寸分布规律基本不变。理论分析结果表明,环境相对湿度条件是制约飞秒激光诱导较大尺寸气溶胶生成的关键因素。
        Under room temperature, the influences of different parameters on the formation of femtosecond laser-induced aerosols with relatively large size in a small cloud chamber are studied. The experimental results show that, under sub-saturated condition, the aerosol number density increases with the increase of relative humidity, and 0.3-0.5 μm aerosols are dominated. However, when the environmental relative humidity is near to be saturated, the number density of relative large-size aerosols(with their diameter D≥0.7 μm) is enhanced mostly, and at the end, the number density of 1.0-2.0 μm aerosols is comparable with that of 0.3-0.5 μm aerosols. When the laser irradiation duration and tightened focusing condition are prolonged under this near saturated condition, the number density of different size aerosols increases simultaneously at the same degree, and ultimately the corresponding size distribution does not change too much. Theoretical analysis results show that environmental relative humidity plays a key role for femtosecond laser-induced relative large-size aerosol formation.
引文
[1] Fork R L, Greene B I, Shank C V. Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking[J]. Applied Physics Letters, 1981, 38(9): 671-672.
    [2] Marburger J H. Self-focusing: theory[J]. Progress in Quantum Electronics, 1975, 4: 35-110.
    [3] Chin S L. Femtosecond laser filamentation[M]. New York: Springer, 2010.
    [4] Couairon A, Mysyrowicz A. Femtosecond filamentation in transparent media[J]. Physics Reports, 2007, 441(2/3/4): 47-189.
    [5] Nishioka H, Odajima W, Ueda K I, et al. Ultrabroadband flat continuum generation in multichannel propagation of terrawatt Ti:sapphire laser pulses[J]. Optics Letters, 1995, 20(24): 2505-2507.
    [6] Bergé L, Skupin S, Méjean G, et al. Supercontinuum emission and enhanced self-guiding of infrared femtosecond filaments sustained by third-harmonic generation in air[J]. Physical Review E, 2005, 71: 016602.
    [7] Talebpour A, Abdel-Fattah M, Bandrauk A D, et al. Spectroscopy of the gases interacting with intense femtosecond laser pulses[J]. Laser Physics, 2001, 11(1): 68-76.
    [8] Xu H L, Azarm A, Bernhardt J, et al. The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air[J]. Chemical Physics, 2009, 360(1/2/3): 171-175.
    [9] Ak?zbek N, Iwasaki A, Becker A, et al. Third-harmonic generation and self-channeling in air using high-power femtosecond laser pulses[J]. Physical Review Letters, 2002, 89(14): 143901.
    [10] Yang H, Zhang J, Zhang J, et al. Third-order harmonic generation by self-guided femtosecond pulses in air[J]. Physical Review E, 2003, 67: 015401.
    [11] Petit Y, Henin S, Kasparian J, et al. Production of ozone and nitrogen oxides by laser filamentation[J]. Applied Physics Letters, 2010, 97(2): 021108.
    [12] Rohwetter P, Kasparian J, W?ste L, et al. Modelling of HNO3- mediated laser-induced condensation: a parametric study[J]. The Journal of Chemical Physics, 2011, 135(13): 134703.
    [13] Point G, Thouin E, Mysyrowicz A, et al. Energy deposition from focused terawatt laser pulses in air undergoing multifilamentation[J]. Optics Express, 2016, 24(6): 6271-6282.
    [14] Kasparian J, Rodriguez M, Méjean G, et al. White-light filaments for atmospheric analysis[J]. Science, 2003, 301(5629): 61-64.
    [15] Chin S L, Xu H L, Luo Q, et al. Filamentation “remote” sensing of chemical and biological agents/pollutants using only one femtosecond laser source[J]. Applied Physics B, 2009, 95(1): 1-12.
    [16] Hauri C P, Kornelis W, Helbing F W, et al. Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation[J]. Applied Physics B, 2004, 79(6): 673-677.
    [17] Couairon A, Biegert J, Hauri C P, et al. Self-compression of ultra-short laser pulses down to one optical cycle by filamentation[J]. Journal of Modern Optics, 2006, 53(1/2): 75-85.
    [18] Tzortzakis S, Méchain G, Patalano G, et al. Coherent subterahertz radiation from femtosecond infrared filaments in air[J]. Optics Letters, 2002, 27(21): 1944-1946.
    [19] D′amico C, Houard A, Franco M, et al. Conical forward THz emission from femtosecond-laser-beam filamentation in air[J]. Physical Review Letters, 2007, 98(23): 235002.
    [20] Pépin H, Comtois D, Vidal F, et al. Triggering and guiding high-voltage large-scale leader discharges with sub-joule ultrashort laser pulses[J]. Physics of Plasmas, 2001, 8(5): 2532-2539.
    [21] Kasparian J, Ackermann R, André Y B, et al. Electric events synchronized with laser filaments in thunderclouds[J]. Optics Express, 2008, 16(8): 5757-5763.
    [22] Rohwetter P, Kasparian J, Stelmaszczyk K, et al. Laser-induced water condensation in air[J]. Nature Photonics, 2010, 4(7): 451-456.
    [23] Ju J J, Liu J S, Wang C, et al. Laser-filamentation-induced condensation and snow formation in a cloud chamber[J]. Optics Letters, 2012, 37(7): 1214-1216.
    [24] Henin S, Petit Y, Rohwetter P, et al. Field measurements suggest the mechanism of laser-assisted water condensation[J]. Nature Communications, 2011, 2: 456.
    [25] Saathoff H, Henin S, Stelmaszczyk K, et al. Laser filament-induced aerosol formation[J]. Atmospheric Chemistry and Physics, 2013, 13(9): 4593-4604.
    [26] Mongin D, Slowik J G, Schubert E, et al. Non-linear photochemical pathways in laser-induced atmospheric aerosol formation[J]. Scientific Reports, 2015, 5: 14978.
    [27] Guo X L. Atmospheric physics and weather modification[M]. Beijing: China Meteorological Press, 2010. 郭学良. 大气物理与人工影响天气[M]. 北京: 气象出版社, 2010.
    [28] Li D S. The current situation and prospects of weather modification[M]. Beijing: China Meteorological Press, 2002. 李大山. 人工影响天气现状与展望[M]. 北京: 气象出版社, 2002.
    [29] Kossyi A, Kostinsky A Y, Matveyev A A, et al. Kinetic scheme of the non-equilibrium discharge in nitrogen-oxygen mixtures[J]. Plasma Sources Science and Technology, 1992, 1(3): 207-220.
    [30] Yuan S, Wang T J, Teranishi Y, et al. Lasing action in water vapor induced by ultrashort laser filamentation[J]. Applied Physics Letters, 2013, 102(22): 224102.
    [31] Kurtén T, Loukonen V, Vehkam?ki H, et al. Amines are likely to enhance neutral and ion-induced sulfuric acid-water nucleation in the atmosphere more effectively than ammonia[J]. Atmospheric Chemistry and Physics, 2008, 8(14): 4095-4103.
    [32] Zhao J, Khalizov A, Zhang R Y, et al. Hydrogen-bonding interaction in molecular complexes and clusters of aerosol nucleation precursors[J]. The Journal of Physical Chemistry A, 2009, 113(4): 680-689.
    [33] Zhang R, Wang L, Khalizov A F, et al. Formation of nanoparticles of blue haze enhanced by anthropogenic pollution[J]. Proceedings of the National Academy of Sciences, 2009, 106(42): 17650-17654.
    [34] Zhang R Y, Khalizov A, Wang L, et al. Nucleation and growth of nanoparticles in the atmosphere[J]. Chemical Reviews, 2012, 112(3): 1957-2011.
    [35] Wang L, Khalizov A F, Zheng J, et al. Atmospheric nanoparticles formed from heterogeneous reactions of organics[J]. Nature Geoscience, 2010, 3(4): 238-242.
    [36] Yu H, McGraw R, Lee S H. Effects of amines on formation of sub-3 nm particles and their subsequent growth[J]. Geophysical Research Letters, 2012, 39(2): L02807.
    [37] Yu F Q. Quasi-unary homogeneous nucleation of H2SO4-H2O[J]. The Journal of Chemical Physics, 2005, 122(7): 074501.
    [38] Seinfeld J H, Pandis S N, Noone K. Atmospheric chemistry and physics: from air pollution to climate change[J]. Physics Today, 1998, 51(10): 88-90.
    [39] Théberge F, Liu W W, Simard P T, et al. Plasma density inside a femtosecond laser filament in air: strong dependence on external focusing[J]. Physical Review E, 2006, 74(3): 036406.
    [40] Petrarca M, Henin S, Stelmaszczyk K, et al. Multijoule scaling of laser-induced condensation in air[J]. Applied Physics Letters, 2011, 99(14): 141103.
    [41] Jaenicke R. The optical particle counter: Cross-sensitivity and coincidence[J]. Journal of Aerosol Science, 1972, 3(2): 95-111.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700