用户名: 密码: 验证码:
地幔过渡带顶部低速层地震学研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Seismological study of the low-velocity layer atop the mantle transition zone
  • 作者:李国辉 ; 白玲 ; 周元泽 ; 崔清辉
  • 英文作者:LI Guo-hui;BAI Ling;ZHOU Yuan-ze;CUI Qing-hui;Key Laboratory of Continental Collision and Plateau Uplift,Institute of Tibetan Plateau Research,Chinese Academy of Sciences;College of Earth Sciences,University of Chinese Academy of Sciences;
  • 关键词:地幔过渡带 ; 低速层 ; 地震学 ; 中国大陆及其沿海地区
  • 英文关键词:mantle transition zone;;low-velocity layer;;seismology;;China and surrounding regions
  • 中文刊名:DQWJ
  • 英文刊名:Progress in Geophysics
  • 机构:中国科学院青藏高原研究所大陆碰撞与高原隆升实验室;中国科学院大学;
  • 出版日期:2018-06-25 19:00
  • 出版单位:地球物理学进展
  • 年:2018
  • 期:v.33;No.150
  • 基金:国家自然科学基金(4161144076,41490611)资助
  • 语种:中文;
  • 页:DQWJ201804006
  • 页数:8
  • CN:04
  • ISSN:11-2982/P
  • 分类号:42-49
摘要
地幔过渡带顶部低速层的存在、结构、成分、成因及其动力学稳定性对理解地球内部物质运动、化学分异、板块俯冲、地幔柱起源、板内火山、地幔对流模式和地球演化等深部物理化学过程具有非常重要作用.由于其厚度薄且横向变化剧烈,致使其地震学探测十分困难,再加上数据的限制,有关该低速层探测的研究不是很多,该低速层的结构、全球分布及形成原因等仍然存在很大争议.基于此,本文概述了该低速层的研究进展及存在问题,介绍了各种地震学探测方法在该低速层应用上的优缺点,总结了中国大陆及其沿海地区地幔过渡带顶部低速层研究取得的成果及不足,并探讨了未来工作方向.
        The existence,structure,composition,formation and dynamic stability of the Low-Velocity Layer( LVL) atop the Mantle Transition Zone( MTZ) is very important to understand the internal material movement, chemical differentiation, plate subduction,mantle plume origin,intraplate volcano,mantle convection,earth deep evolution and related physical and chemical processes.Because of thin thickness and sharp changes, seismological detection of the LVL has proved difficult. The seismological structure,global distribution and formation of the LVL are still controversy. Based on these,firstly,research progress of the LVL is summarized in this paper. Secondly,we introduced the advantages and disadvantages of various seismological methods in the application of the LVL. Finally, we described in detail the achievements and shortcomings of the LVL and discussed the direction of future work beneath China and surrounding areas.
引文
Agee C B.2007.Static compression of hydrous silicate melt and the effect of water on planetary differentiation[J].Earth and Planetary Science Letters,265:641-654.
    Bagley B,Courtier A,Revenaugh J.2009.Melting in the deep upper mantle oceanward of the Honshu slab[J].Physics of the Earth and Planetary Interiors,175(3-4):137-144.
    Bercovici D,Karato S.2003.Whole-mantle convection and the transition-zone water filter[J].Nature,425(6953):39-44.
    Bolfan-Casanova N.2005.Water in the Earth’s mantle[J].Mineralogical Magazine,69(3):229-258.
    Brudzinski M R,Chen W P.2003.A petrologic anomaly accompanying outboard earthquakes beneath Fiji-Tonga:Corresponding evidence from broadband P and S waveforms[J].Journal of Geophysical Research,108(B6):2299,doi:10.1029/2002JB0O2012.
    Chambers K,Woodhouse J H,Deuss A.2005.Topography of the 410-km discontinuity from PP and SS precursors[J].Earth and Planetary Science Letters,235:610-622.
    Chen J,Inoue T,Yurimoto H,et al.2002.Effect of water on olivinewadsleyite phase boundary in the(Mg,Fe)2Si O4 system[J].Geophysical Research Letters,29(18):1875,doi:10.1029/2001GL014429.
    Chevrot S,Vinnik L,Montagner J P.1999.Global-scale analysis of the mantle Pds phases[J].Journal of Geophysical Research,104(B9):20203-20219.
    Chu R S.2008.Upper mantle velocity structure beneath the Tibetan Plateau from triplicated seismic P waveforms[D].Missouri:Saint Louis University.
    Collier J D,Helffrich G R,Wood B J.2001.Seismic discontinuities and subduction zones[J].Physics of the Earth and Planetary Interiors,127(1):35-49.
    Courtier A M,Revenaugh J.2007.Deep upper-mantle melting beneath the Tasman and Coral Seas detected with multiple Sc S reverberations[J].Earth and Planetary Science Letters,259(1-2):66-76.
    Dasgupta R,Hirschmann M M.2006.Melting in the Earth's deep upper mantle caused by carbon dioxide[J].Nature,440(7084):659-662.
    Deon F,Koch-Muller M,Rhede D,et al.2011.Water and iron effect on the P-T-x coordinates of the 410-km discontinuity in the Earth upper mantle[J].Contributions to Mineralogy and Petrology,161(4):653-666.
    Deuss A.2007.Seismic observations of transition-zone discontinuities beneath hotspot locations,Special Papers of the Geological Society of America:Plates,Plumes and Planetary Processes[J].Geological Society of America Special Paper,430(0):121-136.
    Dziewonski A M,Anderson D L.1981.Preliminary reference Earth model[J].Physics of the Earth and Planetary Interiors,25(4):297-356.
    Fee D,Dueker K.2004.Mantle transition zone topography and structure beneath the Yellowstone hotspot[J].Geophysical Research Letters,31(18):L18603,doi:10.1029/2004GL020636.
    Gao W,Matzel E,Grand S P.2006.Upper mantle seismic structure beneath eastern Mexico determined from P and S waveform inversion and its implications[J].Journal of Geophysical Research,111(B8):B08307.
    Gao Y J,Cui H H,Zhou Y Z.2017.Seismic detection of P-wave velocity structure atop MTZ beneath the Central Tian Shan and Tarim Basin.Chinese Journal of Geophysics(in Chinese)[J],60(1):98-111,doi:10.6038/cjg20170109.
    Grand P,Helmberger D V.1984.Upper mantle shear structure beneath the northwest Atlantic Ocean[J].Journal of Geophysical Research,89(B13):11465-11475.
    Helffrich G.2000.Topography of the transition zone seismic discontinuities[J].Reviews of Geophysics,38(1):141-158.
    Hirose K,Kawamoto T.1995.Hydrous partial melting of lherzolite at 1GPa:The effect of H2O on the genesis of basaltic magmas[J].Earth and Planetary Science Letters,133(3-4):463-473.
    Hirth G,Kohlstedt D L.1996.Water in the oceanic upper mantle:implications for rheology,melt extraction and the evolution of the lithosphere[J].Earth and Planetary Science Letters,144(1-2):93-108.
    Huang J L,Zhao D P.2006.High-resolution mantle tomography of China and surrounding regions[J].Journal of Geophysical Research,111(B9):B09305,doi:10.1029/2005JB004066.
    Inoue T.1994.Effect of water on melting phase relations and melt composition in the system Mg2Si O4-Mg Si O3-H2O up to 15 GPa[J].Physics of the Earth and Planetary Interiors,85(3-4):237-263.
    Jasbinsek J J,Dueker K G.2007.Ubiquitous low-velocity layer atop the410-km discontinuity in the northern Rocky Mountains[J].Geochemistry Geophysics Geosystems,8(10):Q10004,doi:10.1029/2007GC001661.
    Jasbinsek J J,Dueker K G,Hansen S M.2010.Characterizing the 410km discontinuity low-velocity layer beneath the LA RISTRA array in the North American Southwest[J].Geochemistry Geophysics Geosystems,11(3):Q03008.
    Kennett B L N,Engdahl E R.1991.Travel times for global earthquake location and phase identification[J].Geophysical Journal International,105(2):429-465.
    Kennett B L N,Engdahl E R,Buland R.1995.Constraints on seismic velocities in the Earth from traveltimes[J].Geophysical Journal International,122(1):108-124.
    Kohlstedt D L,Keppler H,Rubie D C.1996.Solubility of water in theα,βandγphases of(Mg,Fe)2Si O4[J].Contributions to Mineralogy and Petrology,123(4):345-357.
    Lawrence J F,Sheare P M.2008.Imaging mantle transition zone thickness with Sd S-SS finite-frequency sensitivity kernels[J].Geophysical Journal International,174(1):143-158.
    Leahy G M,Bercovici D.2007.On the dynamics of a hydrous melt layer above the transition zone[J].Journal of Geophysical Research,112(B7):B07401,doi:10.1029/2006JB004631.
    Li C,Van Der Hilst R D.2010.Structure of the upper mantle and transition zone beneath Southeast Asia from traveltime tomography[J].Journal of Geophysical Research,115(B7):B07308.
    Li C,Van Der Hilst R D,Meltzer A S,et al.2008.Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma[J].Earth and Planetary Science Letters,274(1-2):157-168,doi:10.1016/j.epsl.2008.07.016.
    Li G,Bai L,Zhou Y,et al.2017.Velocity structure of the mantle transition zone beneath the southeastern margin of Tibetan Plateau[J].Tectonophysics,721:349-360,doi.org/10.1016/j.tecto.2017.08.009.
    Li G,Sui Y,Zhou Y.2014.Low-velocity layer atop the mantle transition zone in the lower Yangtze Craton from P waveform triplication.Chinese Journal of Geophysics(in Chinese)[J],57(7):2362-2371.
    Li J,Wang X,Wang X J,et al.2013.P and SH velocity structure in the upper mantle beneath Northeast China:Evidence for a stagnant slab in hydrous mantle transition zone.Earth and Planetary Science Letters,367:71-81.
    Litasov K,Ohtani E.2002.Phase relations and melt compositions in CMAS-pyrolite-H2O system up to 25 GPa[J].Physics of the Earth and Planetary Interiors,134(1-2):105-127.
    Litasov K,Ohtani E,Langenhorst F,et al.2003.Water solubility in Mg-perovskites and water storage capacity in the lower mantle[J].Earth and Planetary Science Letters,211(1-2):189-203.
    Li Y H,Wu Q J,An Z H,et al.2006.The Poisson ratio and crustal structure across the NE Tibetan Plateau determined from receiver functions.Chinese Journal of Geophysics(in Chinese)[J],49(5):1359-1368.
    Matsukage K N,Jing Z,Karato S.2005.Density of hydrous silicate melt at the conditions of Earth’s deep upper mantle[J].Nature,438:488-491,doi:10.1038/nature04241.
    Muller R D,Seton M.2016.Paleophysiography of Ocean Basins[J].Encyclopedia of Marine Geosciences,doi:10.1007/978-94-007-6644-0_84-1.
    Obayash M,Sugioka H,Yoshimitsu J,et al.2006.High temperature anomalies oceanward of subducting slabs at the 410-km discontinuity[J].Earth and Planetary Science Letters,243(1-2):149-158,doi:10.1016/j.epsl.2005.12.032.
    Ohtani E,Mizobata H,Yurimoto H.2000.Stability of dense hydrous magnesium silicate phases in the system Mg2Si O4-H2O and Mg Si O3-H2O at pressures up to 27 GPa[J].Physics and Chemistry of Minerals,27:533-544.
    Oreshin S I,Vinnik L P,Kiselev S G,et al.2011.Deep seismic structure of the Indian shield,western Himalaya,Ladakh and Tibet[J].Earth and Planetary Science Letters,307(3-4):415-429.
    Pearson D G,Brenker F E,Nestola F,et al.2014.Hydrous mantle transition zone indicated by ringwoodite included within diamond[J].Nature,507:221-224.
    Revenaug H J,Sipkin S A.1994.Seismic evidence for silicate melt atop the 410-km mantle discontinuity[J].Nature,369(6480):474-476.
    Sakamaki T,Suzuki A,Ohtani E.2006.Stability of hydrous melt at the base of the Earth's upper mantle[J].Nature,439(7073):192-194.
    Sato H,Sacks I S,Murase T,et al.1988.Attenuation of Compressional Waves in Peridotite Measured as a Function of Temperature at 200MPa[J].Pure and Applied Geophysics,128(1-2):433-447.
    Sato H,Sacks I S,Murase T,et al.1989.Qp-melting temperature relation in peridotite at high pressure and temperature:Attenuation mechanism and implications for the mechanical properties of the upper mantle[J].Journal of Geophysical Research:Solid Earth banner,94(B8):10647-10661.
    Schaeffer A J,Bostock M G.2010.A low-velocity zone atop the transition zone in northwestern Canada[J].Journal of Geophysical Research,115(B6):B06302.
    Schmandt B,Dueker K G,Hansen S M,et al.2011.A sporadic lowvelocity layer atop the western U.S.mantle transition zone and short-wavelength variations in transition zone discontinuities[J].Geochemistry Geophysics Geosystems,12(8):Q08014,doi:10.1029/2011GC003668.
    Smyth J R.1987.b-Mg2Si O4:a potential host for water in the mantle?[J]American Mineralogist,72:1051-1055.
    Smyth J R,Frost D J.2002.The effect of water on the 410-km discontinuity:an experimental study[J].Geophysical Research Letters,29(10):123-1-123-4,http://dx.doi.org/10.1029/2001GL014418.
    Smyth J R,Holl C M,Frost D J,et al.2003.Structural systematics of hydrous ringwoodite and water in Earth’s interior[J].American Mineralogist,88(10):1402-1407.
    Song T R A,Helmberger D V,Grand S P.2004.Low-velocity zone atop the 410-km seismic discontinuity in the northwestern United States[J].Nature,427(6974):530-533.
    Stampfli G M,Borel G D.2002.A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons[J].Earth and Planetary Science Letters,196(1-2):17-33.
    Stolper E,Walker D,Hager B H,et al..1981.Melt segregation from partially molten source regions:The importance of melt density and source region size[J].Journal of Geophysical Research,86(B7):6261-6271.
    Sui Y,Zhou Y Z.2015.Low-velocity anomaly around 410 km beneath the Yellow and East China Seas with P wave triplications[J].Acta Seismologica Sinica(in Chinese),37(1):1-14.
    Tajima F,Grand S P.1998.Variation of transition zone high-velocity anomalies and depression of 660 km discontinuity associated with subduction zones from the southern Kuriles to Izu-Bonin and Ryukyu[J].Journal of Geophysical Research,103(B7):15015-15036.
    Tauzin B,Debayle E,Wittlinger G.2010.Seismic evidence for a global low-velocity layer within the Earth's upper mantle[J].Nature Geoscience,3(10):718-721.
    Tauzin B,van der Hilst R D,Wittlinger G,et al.2013.Multiple transition zone seismic discontinuities and low velocity layers below western United States[J].Journal of Geophysical Research-Solid Earth,118(5),doi:10.1002/jgrb.50182.
    Toffelmier D A,Tyburczy J A.2007.Electromagnetic detection of a 410-km-deep melt layer in the southwestern United States[J].Nature,447(21):991-994.
    Vinnik L,Farra V.2002.Subcratonic low-velocity layer and flood basalts[J].Geophysical Research Letters,29(4):8-1-8-4.
    Vinnik L,Farra V.2007.Low S velocity atop the 410-km discontinuity and mantle plumes[J].Earth and Planetary Science Letters,262(3-4):398-412.
    Vinnik L,Kumar M R,Kind R,et al.2003.Super-deep low-velocity layer beneath the Arabian plate[J].Geophysical Research Letters,30(7):1415(68-1-68-4).
    Vinnik L,Ren Y,Stutzmann E,et al.2010.Observations of S410p and S350p phases at seismograph stations in California[J].Journal of Geophysical Research,115(B5):B05303.
    Vinnik L P,Green R W E,Nicolaysen L O.1996.Deep seismic structure of the Kaapvaal craton[J].Tectonophysics,262(1-4):67-75.
    Wang B S,Niu F L.2010.A broad 660 km discontinuity beneath northeast China revealed by dense regional seismic networks in China[J].Journal of Geophysical Research,115(B6),doi:10.1029/2009JB006608.
    Wang Y,Wen L X,Weidner D.2006.SH velocity and compositional models near the 660-km discontinuity beneath South America and northeast Asia[J].Journal of Geophysical Research,111(B7):B07305,doi:10.1029/2005JB003849.
    Wittlinger G,Farra V.2007.Converted waves reveal a thick and layered tectosphere beneath the Kalahari super-craton[J].Earth and Planetary Science Letters,254(3-4):404-415.
    Wu Q J,Zeng R S.1998.The crustal structure of Qinghai-Xizang plateau inferred from broadband teleseismic waveform[J].Acta Geophysica Sinica(in Chinese),41(5):669-679.
    Xu Q,Zhao J M.2008.A review of the receiver function method[J].Progress in Geophysics(in Chinese),23(6):1709-1716.
    Youngs B A R,Bercovici D.2009.Stability of a compressible hydrous melt layer above the transition zone[J].Earth and Planetary Science Letters,278(1-2):78-86,doi:10.1016/j.epsl.2008.11.024.
    Zhang R Q,Wu Q J,Li Y H,et al.2008.SH-wave velocity Structure of upper mantle beneath the Western Qiangtang of Tibetan Plateau[J].Chinese Science Bulletin(in Chinese),53(19):2335-2341.
    Zhao L S,Helmberger D V,Harkrider D G.1991.Shear-ve1ocity structure of the crust and upper mantle beneath the Tibetan Platean and southeastern China[J].Geophysical Journal International,105(3):713-730.
    Zhou X Y,Ma M N,Xu Z S.2014.Progress of the low velocity zone atop the mantle transition zone[J].Progress in Geophysics(in Chinese),29(4):1615-1625,doi:10.6038/pg201404173.
    Zhu L P,Kanamori H.2000.Moho depth variation in southern California from teleseismic receiver functions[J].Journal of Geophysical Research,105(B2):2969-2980.
    高雅健,崔辉辉,周元泽.2017.中天山和塔里木盆地下方地幔转换带顶部P波速度结构探测[J].地球物理学报,60(1):98-111.
    李国辉,眭怡,周元泽.2014.基于P波三重震相的下扬子克拉通地幔转换带顶部低速层初探[J].地球物理学报,57(7):2362-2371.
    李永华,吴庆举,安张辉,等.2006.青藏高原东北缘地壳S波速度结构与泊松比及其意义[J].地球物理学报,49(5):1359-1368.
    眭怡,周元泽.2015利用三重震相探测中国东部海域410 km深度低速层[J].地震学报,37(1):1-14.
    吴庆举,曾融生.1998.用宽频带远震接收函数研究青藏高原的地壳结构[J].地球物理学报,41(5):669-679.
    徐强,赵俊猛.2008.接收函数方法的研究综述[J].地球物理学进展,23(6):1709-1716.
    张瑞青,吴庆举,李永华,等.2008.青藏高原羌塘西部上地幔SH波速度结构的研究[J].科学通报,53(19):2335-2341.
    周晓亚,马麦宁,徐志双.2014.地幔过渡带顶面低速层的研究进展[J].地球物理学进展,29(4):1615-1625,doi:10.6038/pg201404173.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700